精英家教网 > 高中数学 > 题目详情
已知命题p:“存在实数a,使直线x+ay-2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆
x2
8
+
y2
2
=1
内部”,若命题“p且?q”是真命题,求实数a的取值范围.
分析:先求命题p,q为真命题时a的范围,再根据复合命题真值表判断,若命题“p且?q”是真命题,则命题p,¬q都是真命题,即p真q假,从而求出a的范围.
真值表进行判断.
解答:解:∵直线x+ay-2=0与圆x2+y2=1有公共点
2
1+a2
≤1⇒a2≥1,即a≥1或a≤-1,
命题p为真命题时,a≥1或a≤-1;
∵点(a,1)在椭圆
x2
8
+
y2
2
=1
内部,
a2
8
+
1
2
<1 即a2<4,即-2<a<2

命题q为真命题时,-2<a<2,
由复合命题真值表知:若命题“p且?q”是真命题,则命题p,¬q都是真命题
即p真q假,则
a≥1或a≤-1
a≥2或a≤-2
⇒a≥2或a≤-2.
故所求a的取值范围为(-∞,-2]∪[2,+∞).
点评:本题借助考查复合命题的真假判定,考查了直线与圆的位置关系,点与椭圆的位置关系,解决的关键是求简单命题为真时a的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a∈R,且以下命题都为真命题:
命题p:实系数一元二次方程x2+ax+2=0的两根都是虚数;
命题q:存在复数z同时满足|z|=2且|z+a|=1.
求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,
命题p:实系数一元二次方程x2+ax+2=0无实根;
命题q:存在点(x,y)同时满足x2+y2=4且(x+a)2+y2=1.
试判断:命题p是命题q的什么条件(充分、必要、充分不必要、必要不充分、充要或既不充分也不必要条件)?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中的真命题为
(2)(3)(4)(5)
(2)(3)(4)(5)

(1)复平面中满足|z-2|-|z+2|=1的复数z的轨迹是双曲线;
(2)当a在实数集R中变化时,复数z=a2+ai在复平面中的轨迹是一条抛物线;
(3)已知函数y=f(x),x∈R+和数列an=f(n),n∈N,则“数列an=f(n),n∈N递增”是“函数y=f(x),x∈R+递增”的必要非充分条件;
(4)在平面直角坐标系xoy中,将方程g(x,y)=0对应曲线按向量(1,2)平移,得到的新曲线的方程为g(x-1,y-2)=0;
(5)设平面直角坐标系xoy中方程F(x,y)=0表椭圆示一个,则总存在实常数p、q,使得方程F(px,qy)=0表示一个圆.

查看答案和解析>>

科目:高中数学 来源:广东省期中题 题型:解答题

已知,命题实系数一元二次方程无实根;命题存在点同时满足.试判断:命题p是命题q的什么条件(充分、必要、充分不必要、必要不充分、充要或既不充分也不必要条件)?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:存在实数m,使方程x2+mx+1=0有两个不等的负根;命题q:存在实数m,使方程4x2+4(m-2)x+1=0无实根.若“p∨q”为真,“p∧q”为假,求m的取值范围.

查看答案和解析>>

同步练习册答案