精英家教网 > 高中数学 > 题目详情

【题目】某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):

空气质量指数

空气质量等级

1级优

2级良

3级轻度污染

4级中度污染

5级重度污染

6级严重污染

该社团将该校区在2018年11月中10天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.

(Ⅰ)以这10天的空气质量指数监测数据作为估计2018年11月的空气质量情况,则2018年11月中有多少天的空气质量达到优良?

(Ⅱ)已知空气质量等级为1级时不需要净化空气,空气质量等级为2级时每天需净化空气的费用为1000元,空气质量等量等级为3级时每天需净化空气的费用为2000元.若从这10天样本中空气质量为1级、2级、3级的天数中任意抽取两天,求这两天的净化空气总费用为3000元的概率.

【答案】(1)9天(2)

【解析】

1)由频率分布直方图得到11月中10天的空气质量优良的频率,即为概率,然后进行估计可得30天中空气优良的天数.(2)设空气质量指数在的一天为,空气质量指数在的两天为,空气质量指数在的三天为1、2、3,然后列举得到从中任意抽取两天的所有情况,进而可得到这两天的净化空气总费用为3000元的所有情况,最后根据古典概型概率求解即可.

(1)由频率分布直方图可得:这10天中1级优1天,2级良2天,3-6级共7天.

所以这10天中空气质量达到优良的概率为

因为

所以11月中平均有9天的空气质量达到优良.

(2)设空气质量指数在的一天为,空气质量指数在的两天为,空气质量指数在的三天为1、2、3,则从六天中随机抽取两天的所有可能结果为:,共15种情况.

其中这两天的净化空气总费用为3000元的可能结果为,共6种情况.

所以这两天的净化空气总费用为3000元的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,点(anan+1)在直线yx+2上,且首项a1=1.

(1)求数列{an}的通项公式;

(2)数列{an}的前n项和为Sn,等比数列{bn}中,b1a1b2a2,数列{bn}的前n项和为Tn,请写出适合条件TnSn的所有n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,ABCDCD=2ABEPC的中点,且∠PAB=PDC=90°

(Ⅰ)证明:BE∥平面PAD

(Ⅱ)证明:平面PAB⊥平面PAD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在x轴上且长轴长为4的椭圆C过点T11),记l为圆Ox2+y2=1的切线

1)求椭圆C的方程;

2)若l与椭圆C交于AB两点,求证:∠AOB为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,已知,分别根据下列条件求(精确到0.01°).

(1)①;②;③;④;⑤

(2)根据上述计算结果,讨论使有一个解、两个解、无解时,的取值情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球的表面积为__________

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395438592/STEM/3d69fcdc50254164a6fb81896ba4fb1c.png]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图的折线图为某小区小型超市今年一月份到五月份的营业额和支出数据(利润=营业额-支出),根据折线图,下列说法中正确的是(

A.该超市这五个月中,利润随营业额的增长在增长

B.该超市这五个月中,利润基本保持不变

C.该超市这五个月中,三月份的利润最高

D.该超市这五个月中的营业额和支出呈正相关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用“五点法”画出下列函数的图像,并指出该函数图像怎样由函数的图像变换得到.

1

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案