精英家教网 > 高中数学 > 题目详情

(本题满分10分) 如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=>2),BC=2,且AE=AH=CF=CG,

设AE=,绿地面积为.

(1)写出关于的函数关系式,并指出这个函数的定义域;

(2)当AE为何值时,绿地面积最大?

 

【答案】

(1)SΔAEH=SΔCFGx2, SΔBEF=SΔDGH-x)(2-x)

∴y=SABCD-2SΔAEH-2SΔBEF=2-x2-(-x)(2-x)=-2x2+(+2)x

∴y=-2x2+(+2)x,0<x≤2

(2)当,即<6时,则x=时,y取最大值

≥2,即≥6时,y=-2x2+(+2)x,在0,2]上是增函数,

  则x=2时,y取最大值2-4

综上所述:当<6时,AE=时,绿地面积取最大值

≥6时,AE=2时,绿地面积取最大值2-4

【解析】本题主要考查实际问题中的建模和解模能力,注意二次函数求最值的方法.

(1)先求得四边形ABCD,△AHE的面积,再分割法求得四边形EFGH的面积,即建立y关于x的函数关系式;

(2)由(1)知y是关于x的二次函数,用二次函数求最值的方法求解.

(1)SΔAEH=SΔCFGx2, SΔBEF=SΔDGH-x)(2-x)

∴y=SABCD-2SΔAEH-2SΔBEF=2-x2-(-x)(2-x)=-2x2+(+2)x

∴y=-2x2+(+2)x,0<x≤2

(2)当,即<6时,则x=时,y取最大值

≥2,即≥6时,y=-2x2+(+2)x,在0,2]上是增函数,

  则x=2时,y取最大值2-4

综上所述:当<6时,AE=时,绿地面积取最大值

≥6时,AE=2时,绿地面积取最大值2-4

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

 17.本题满分10分已知函数的图象在y轴上的截距为,相邻的两个最值点是(1)求函数;(2)设,问将函数的图像经过怎样的变换可以得到 的图像?(3)画出函数在区间上的简图.

查看答案和解析>>

科目:高中数学 来源:2014届浙江省高二下学期期中考试理科数学试卷(解析版) 题型:解答题

(本题满分10分)

(Ⅰ)设,求证:

(Ⅱ)设,求证:三数中至少有一个不小于2.

 

查看答案和解析>>

科目:高中数学 来源:2014届河南省高二上学期期末考试理科数学试卷(解析版) 题型:解答题

(本题满分10分)

如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,

⑴求证:A1C⊥平面BDE;

⑵求A1B与平面BDE所成角的正弦值。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省扬州市宝应县高三下学期期初测试数学试卷 题型:解答题

(本题满分10分)

如图,已知正三棱柱的所有棱长都为2,为棱的中点,

(1)求证:平面

(2)求二面角的余弦值大小.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年辽宁省高二上学期期末考试数学理卷 题型:解答题

(本题满分10分)

如图,要计算西湖岸边两景点的距离,由于地形的限制,需要在岸上选取两点,现测得 ,,求两景点的距离(精确到0.1km).参考数据:  

 

 

查看答案和解析>>

同步练习册答案