精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆),右焦点,点在椭圆上;

1)求椭圆C的标准方程;

2)是否存在过原点的直线l与椭圆C交于AB两点,且?若存在,请求出所有符合要求的直线;若不存在,请说明理由.

【答案】1;(2)存在过原点的直线l使得,直线l的方程为

【解析】

1)根据焦点坐标和D点坐标列方程组求出即可;

2)对直线l的斜率进行讨论,使用根与系数的关系计算,根据计算结果是否为0得出结论.

1)由题意可知

解得

∴椭圆C的标准方程为:

2)若直线l无斜率,则直线l的方程为

,又

,符合题意;

若直线l有斜率,设直线l的方程为

联立方程组,消元得

,则

不垂直,即

综上,存在过原点的直线l使得,直线l的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南某地区10年间梅雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:

假设每年的梅雨季节天气相互独立,求该地区未来三年里至少有两年梅雨季节的降雨量超过350mm的概率.

老李在该地区承包了20亩土地种植杨梅,他过去种植的甲品种杨梅,平均每年的总利润为28万元而乙品种杨梅的亩产量与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为,请你帮助老李分析,他来年应该种植哪个品种的杨梅可以使总利润万元的期望更大?并说明理由.

降雨量

亩产量

500

700

600

400

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:

20以下

[2030

[3040

[4050

[5060

[6070]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

1)现随机抽取1名顾客,试估计该顾客年龄在[3050)且未使用自由购的概率;

2)从被抽取的年龄在[5070]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[5060)的概率;

3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)求实数的值,使得为奇函数;

(2)若关于的方程有两个不同实数解,求的取值范围;

(3)若关于的不等式对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人上午7时乘船出发,以匀速海里/小时港前往相距50海里的港,然后乘汽车以匀速千米/小时()自港前往相距千米的市,计划当天下午4到9时到达市.设乘船和汽车的所要的时间分别为小时,如果所需要的经费 (单位:元)

(1)试用含有的代数式表示

(2)要使得所需经费最少,求的值,并求出此时的费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点的坐标分别为,直线相交于点,且的斜率之差是1.

1)求点的轨迹的方程;

2)过轨迹上的点,作圆的两条切线,分别交轴于点.当的面积最小时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥S-ABCD的底面为正方形,ACBD交于EMN分别为SDSA的中点,.

1)求证:平面平面SBD

2)求直线BD与平面CMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少05万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.

1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列,每年发放电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;

2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?











查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,且(其中e是自然对数的底数).

(Ⅰ)若,求的单调区间;

(Ⅱ)若,求证:

查看答案和解析>>

同步练习册答案