精英家教网 > 高中数学 > 题目详情
3.计算:
(1)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{{a}^{\frac{2}{3}}+2\root{3}{ab}+4{b}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)×$\root{3}{a}$;
(2)(x+$\frac{1}{x}$)2-[(x+$\frac{1}{x}$)-$\frac{1}{1-(\frac{1}{x}+x)}$]2÷$\frac{{x}^{2}+\frac{1}{{x}^{2}}-x-\frac{1}{x}+3}{{x}^{2}+\frac{1}{{x}^{2}}-2x+\frac{2}{x}+3}$.

分析 (1)利用立方差公式化简$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{{a}^{\frac{2}{3}}+2\root{3}{ab}+4{b}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)×$\root{3}{a}$=$\root{3}{a}$•$\frac{a-8b}{{a}^{\frac{2}{3}}+2\root{3}{ab}+4{b}^{\frac{2}{3}}}$×$\frac{\root{3}{a}}{\root{3}{a}-2\root{3}{b}}$×$\root{3}{a}$=a;
(2)化简(x+$\frac{1}{x}$)2-[(x+$\frac{1}{x}$)-$\frac{1}{1-(\frac{1}{x}+x)}$]2÷$\frac{{x}^{2}+\frac{1}{{x}^{2}}-x-\frac{1}{x}+3}{{x}^{2}+\frac{1}{{x}^{2}}-2x+\frac{2}{x}+3}$=(x+$\frac{1}{x}$)2-[(x+$\frac{1}{x}$)-$\frac{1}{1-(\frac{1}{x}+x)}$]2÷$\frac{(x+\frac{1}{x})^{2}-(x+\frac{1}{x})+1}{(x+\frac{1}{x})^{2}-2(x+\frac{1}{x})+1}$,换元令x+$\frac{1}{x}$=u,从而化简即可.

解答 解:(1)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{{a}^{\frac{2}{3}}+2\root{3}{ab}+4{b}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)×$\root{3}{a}$
=$\root{3}{a}$•$\frac{a-8b}{{a}^{\frac{2}{3}}+2\root{3}{ab}+4{b}^{\frac{2}{3}}}$×$\frac{\root{3}{a}}{\root{3}{a}-2\root{3}{b}}$×$\root{3}{a}$
=a;
(2)(x+$\frac{1}{x}$)2-[(x+$\frac{1}{x}$)-$\frac{1}{1-(\frac{1}{x}+x)}$]2÷$\frac{{x}^{2}+\frac{1}{{x}^{2}}-x-\frac{1}{x}+3}{{x}^{2}+\frac{1}{{x}^{2}}-2x+\frac{2}{x}+3}$
=(x+$\frac{1}{x}$)2-[(x+$\frac{1}{x}$)-$\frac{1}{1-(\frac{1}{x}+x)}$]2÷$\frac{(x+\frac{1}{x})^{2}-(x+\frac{1}{x})+1}{(x+\frac{1}{x})^{2}-2(x+\frac{1}{x})+1}$
令x+$\frac{1}{x}$=u,
则原式=u2-(u-$\frac{1}{1-u}$)2×$\frac{(u-1)^{2}}{{u}^{2}-u+1}$
=u2-$\frac{({u}^{2}-u+1)^{2}}{(u-1)^{2}}$×$\frac{(u-1)^{2}}{{u}^{2}-u+1}$
=u2-(u2-u+1)
=u-1=x+$\frac{1}{x}$-1.

点评 本题考查了学生的化简运算能力及换元法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知动点P(x,y)与定点F(1,0)满足条件:以PF为直径的圆恒与纵轴相切.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)设A,B是轨迹C上的两点,已知点M(-1,m)满足MA⊥MB,求△MAB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知复数z满足z(1+2i)=5i(i为虚数单位).
(1)求复数z,以及复数z的实部与虚部;
(2)求复数$\overline{z}$+$\frac{5}{z}$的模.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知两个非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=0,且2|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则<$\overrightarrow{a}$,$\overrightarrow{b}$>=(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若$\frac{2π}{3}$<α<$\frac{7π}{6}$,$\frac{π}{12}$<β<$\frac{π}{3}$,cos(α+$\frac{5π}{6}$)=$\frac{2}{3}$,sin($\frac{π}{3}$+2β)=$\frac{1}{6}$,则sin(α-2β)=$\frac{2\sqrt{35}+\sqrt{5}}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线过点P(1,2),且与以A(-2,-3)、B(3,0)为端点的线段相交,求直线的斜率的取值范围是(-∞,-1]∪[$\frac{5}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若指数函数f(x)经过点(2,8),若f(x)=3,则x=log23.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.方程(x-1)2+(y+2)2=9表示的图形是(  )
A.圆心为(-1,2),半径为3的圆B.圆心为(-1,2),半径为9的圆
C.圆心为(1,-2),半径为3的圆D.圆心为(1,-2),半径为9的圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设幂函数f(x)=(a-1)xk(a∈R,k∈Q)的图象过点$(\sqrt{2},2)$.
(1)求k,a的值;
(2)若函数h(x)=-f(x)+2b$\sqrt{f(x)}$+1-b在[0,2]上的最大值为3,求实数b的值.

查看答案和解析>>

同步练习册答案