精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,底面为正方形, 平面 分别是 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求三棱锥的体积;

(Ⅲ)求证:平面平面

【答案】(Ⅰ)详见解析(Ⅱ)(Ⅲ)详见解析

【解析】试题分析:

(Ⅰ)证明:连接,与交于点,连接,易证,可知平面

(Ⅱ)由题可求 ,进而证明.,则三棱锥的体积可求;

(Ⅲ)首先证明平面,又,即平面,,所以平面平面. 

试题解析:(Ⅰ)证明:连接,与交于点,连接

中, 分别是 的中点,

所以

又因为平面 平面

所以平面

(Ⅱ)解:因为平面,所以为棱锥的高.

因为,底面是正方形,

所以

因为中点,所以

所以

(Ⅲ)证明:因为平面 平面

所以

在等腰直角中,

平面 平面

所以平面

所以平面

平面

所以平面平面. 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣a)(x+2)为偶函数,若g(x)= ,则a= , g[g(﹣ )]=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=loga(3﹣ax)(a>0,a≠1)
(1)当a=3时,求函数f(x)的定义域;
(2)若g(x)=f(x)﹣loga(3+ax),请判定g(x)的奇偶性;
(3)是否存在实数a,使函数f(x)在[2,3]递增,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)当x为何值时,f(logax)有最小值?求出该最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读下列材料,回答后面问题:

在2014年12月30日播出的“新闻直播间”节目中,主持人说:“……加入此次亚航失联航班被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”

对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为__________,你的理由是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断函数f(x)的奇偶性,并证明.
(2)求函数f(x)的单调性及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题,其中正确的个数有( )

①由独立性检验可知,有的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.

②两个随机变量相关性越强,则相关系数的绝对值越接近于1;

③在线性回归方程中,当解释变量每增加一个单位时,预报变量平均增加0.2个单位;

④对分类变量,它们的随机变量的观测值来说, 越小,“有关系”的把握程度越大.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2 . (Ⅰ)判断f(x)奇偶性并证明;
(Ⅱ)用单调性定义证明函数g(x)= 在函数f(x)定义域内单调递增,并判断f(x)=log2 在定义域内的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A={x|kx2﹣2x﹣1=0}只有一个元素,则实数k的取值集合为(
A.{﹣1}
B.{0}
C.{﹣1,0}
D.(﹣∞,﹣1]∪{0}

查看答案和解析>>

同步练习册答案