【题目】已知a∈R,函数f(x)=xln(﹣x)+(a﹣1)x.
(1)若f(x)在x=﹣e处取得极值,求函数f(x)的单调区间;
(2)求函数f(x)在区间[﹣e2 , ﹣e﹣1]上的最大值g(a).
【答案】
(1)解:f'(x)=ln(﹣x)+a,
由题意知x=﹣e时,f'(x)=0,即:f'(﹣e)=1+a=0,
∴a=﹣1
∴f(x)=xln(﹣x)﹣2x,f'(x)=ln(﹣x)﹣1
令f'(x)=ln(﹣x)﹣1=0,可得x=﹣e
令f'(x)=ln(﹣x)﹣1>0,可得x<﹣e
令f'(x)=ln(﹣x)﹣1<0,可得﹣e<x<0
∴f(x)在(﹣∞,﹣e)上是增函数,在(﹣e,0)上是减函数,
(2)解:f'(x)=ln(﹣x)+a,
∵x∈[﹣e2,﹣e﹣1],
∴﹣x∈[e﹣1,e2],
∴ln(﹣x)∈[﹣1,2],
①若a≥1,则f'(x)=ln(﹣x)+a≥0恒成立,此时f(x)在[﹣e2,﹣e﹣1]上是增函数,
fmax(x)=f(﹣e﹣1)=(2﹣a)e﹣1
②若a≤﹣2,则f'(x)=ln(﹣x)+a≤0恒成立,此时f(x)在[﹣e2,﹣e﹣1]上是减函数,
fmax(x)=f(﹣e2)=﹣(a+1)e2
③若﹣2<a<1,则令f'(x)=ln(﹣x)+a=0可得x=﹣e﹣a
∵f'(x)=ln(﹣x)+a是减函数,
∴当x<﹣e﹣a时f'(x)>0,当x>﹣e﹣a时f'(x)<0
∴f(x)在(﹣∞,﹣e)[﹣e2,﹣e﹣1]上左增右减,
∴fmax(x)=f(﹣e﹣a)=e﹣a,
综上:
【解析】(1)先对函数y=f(x)进行求导,然后令导函数大于0(或小于0)求出x的范围,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可得到答案.(2)先研究f(x)在区间[﹣e2 , ﹣e﹣1]上的单调性,再利用导数求解f(x)在区间[﹣e2 , ﹣e﹣1]上的最大值问题即可,故只要先求出函数的极值,比较极值和端点处的函数值的大小,最后确定出最大值即得.
【考点精析】掌握利用导数研究函数的单调性和函数的极值是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;极值反映的是函数在某一点附近的大小情况.
科目:高中数学 来源: 题型:
【题目】设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( )
A.若l⊥m,mα,则l⊥α
B.若l⊥α,l∥m,则m⊥α
C.若l∥α,mα,则l∥m
D.若l∥α,m∥α,则l∥m
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2 .
(1)求证:CD⊥平面PAC;
(2)如果如果N是棱AB上一点,且直线CN与平面MAB所成角的正弦值为 ,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的一个焦点与抛物线 的焦点F重合,且椭圆短轴的两个端点与F构成正三角形.
(1)求椭圆的方程;
(2)若过点(1,0)的直线l与椭圆交于不同两点P、Q,试问在x轴上是否存在定点E(m,0),使 恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的单调递增区间
(Ⅱ)若sin2x+af(x+ )+1>6cos4x对任意x∈(﹣ , )恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(﹣2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(﹣2)
D.函数f(x)有极大值f(﹣2)和极小值f(2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线E上任意一点P到两个定点 和 的距离之和为4,
(1)求动点P的方程;
(2)设过(0,﹣2)的直线l与曲线E交于C、D两点,且 (O为坐标原点),求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com