精英家教网 > 高中数学 > 题目详情

【题目】设等比数列{an}的公比为q,其前n项之积为Tn,并且满足条件:a1>1,a2 016a2 017>1, .给出下列结论:(1)0<q<1;(2)a2 016a2 018-1>0;(3)T2 016是数列{Tn}中的最大项;(4)使Tn>1成立的最大正整数n为4 031.其中正确的结论为(  )

A. (2)(3) B. (1)(3)

C. (1)(4) D. (2)(4)

【答案】B

【解析】<0a2 016a2 017>1a1>1可得a2 016>1a2 017<1,0<q<1.T2 016是数列{Tn}中的最大项,因为a2 016a2 018(a2 017)2<1,故(2)不正确;由等比数列的性质知,a1a4 032a2a4 031a2 016a2 017>1,所以T4 032a1a2·…·a4 032>1,故(4)不正确,所以(1)(3)正确,选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用,

据市场分析,每辆单车的营运累计利润y单位:元)与营运天数x满足函数关系

.

1)要使营运累计利润高于800元,求营运天数的取值范围;

2)每辆单车营运多少天时,才能使每天的平均营运利润的值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆焦点在轴上,且椭圆个顶点构成的四边形面积为,过点的直线与椭圆相交于不同的两点.

(1)求椭圆的方程;

(2)设为椭圆上一点,且为坐标原点).求当时,实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城镇社区为了丰富辖区内广大居民的业余文化生活,创建了社区“文化丹青”大型活动场所,配备了各种文化娱乐活动所需要的设施,让广大居民健康生活、积极向上.社区最近四年内在“文化丹青”上的投资金额统计数据如表:(为了便于计算,把2015年简记为5,其余以此类推)

年份(年)

5

6

7

8

投资金额(万元)

15

17

21

27

(1)利用所给数据,求出投资金额与年份之间的回归直线方程

(2)预测该社区在2019年在“文化丹青”上的投资金额.

(附:对于一组数据 ,…, ,其回归直线的斜率和截距的最小二乘估计分别为 .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A.互相垂直的两条直线的直观图仍然是互相垂直的两条直线

B.梯形的直观图可能是平行四边形

C.矩形的直观图可能是梯形

D.正方形的直观图可能是平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的底面是矩形,侧面是正三角形,.

(1)求证:平面平面

(2)若中点,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示(把频率当作概率).

(1)求甲、乙两人成绩的平均数和中位数;

(2)现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S-ABC中,平面SAB⊥平面SBCABBCAS=AB,点EFG分别在棱SASBSC上,且平面EFG∥平面ABC,点ESA的中点.求证:

(Ⅰ)AF⊥平面SBC

(Ⅱ)SABC

查看答案和解析>>

同步练习册答案