精英家教网 > 高中数学 > 题目详情
已知椭圆C的方程为左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜率分别为k1,k2,求证:直线AB过定点,并求出直线AB的斜率k的取值范围。
(Ⅰ)(Ⅱ).

试题分析:(Ⅰ)在 中,设,,由余弦定理得
,即,得.
又因为
又因为所以
所以所求椭圆的方程为.                    
(Ⅱ)显然直线的斜率存在,设直线方程为
,即

得,,又


那么
则直线过定点.                
因为


,所以.  
点评:本题主要考查了直线与圆锥曲线的综合问题.此类题综合性强,要求学生要有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

我们把形如的函数称为“莫言函数”,并把其与轴的交点关于原点的对称点称为“莫言点”,以“莫言点”为圆心凡是与“莫言函数”图象有公共点的圆,皆称之为“莫言圆”.当时,在所有的“莫言圆”中,面积的最小值   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过抛物线的焦点作倾斜角为的直线交抛物线于两点,过点作抛物线的切线轴于点,过点作切线的垂线交轴于点

(1) 若,求此抛物线与线段以及线段所围成的封闭图形的面积。
(2) 求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设双曲线的顶点为,该双曲线又与直线交于两点,且为坐标原点)。
(1)求此双曲线的方程;
(2)求

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点为,在长轴上任取一点,过作垂直于的直线交椭圆于点,则使得的点的概率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆的两个焦点,若椭圆上一点满足,则椭圆的离心率(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆左焦点F且倾斜角为的直线交椭圆于A、B两点,若,则椭圆的离心率为(    )
A.              B.              C.                D. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为双曲线的左右焦点,点P在双曲线上,的平分线分线段的比为5∶1,则双曲线的离心率的取值范围是           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的长轴长为,一个焦点的坐标为(1,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:y=kx与椭圆C交于A,B两点,点P为椭圆的右顶点.
(ⅰ)若直线l斜率k=1,求△ABP的面积;
(ⅱ)若直线AP,BP的斜率分别为,求证:为定值.

查看答案和解析>>

同步练习册答案