精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是平行四边形,的中点,平面的中点.

1)证明:平面

2)求直线与平面所成角的正弦值.

【答案】1)详见解析;(2.

【解析】

1)连接,证得的中点.根据中位线证得,由此证得平面.

2)以为原点,分别为轴建立空间直角坐标系,利用直线的方向向量和平面的法向量,计算出直线与平面所成角的正弦值.

1)连接,由于的中点,而四边形是平行四边形,所以的中点.由于的中点,所以在三角形中,是中位线,所以.因为平面平面,所以平面.

2)由于底面是平行四边形,,所以三角形是等边三角形,所以,所以四边形是菱形,对角线相互垂直平分.由于平面,所以.为原点,分别为轴建立空间直角坐标系..所以,平面的法向量为.设直线与平面所成角为,则.所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)已知是虚数单位)是关于的方程的根,,求的值;

2)已知是虚数单位)是关于的方程的一个根,,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

,求的单调区间;

是否存在实数a,使的最小值为0?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是(  )

A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”

B.x=-1”是“x2-5x-6=0”的必要不充分条件

C.命题“若xy,则sin x=sin y”的逆否命题为真命题

D.命题“x0∈R使得”的否定是“x∈R,均有x2x+1<0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的展开图如图二,其中四边形为边长等于的正方形,均为正三角形,在三棱锥中:

1)证明:平面平面

2)若的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线为参数)和定点是曲线的左、右焦点,以原点为极点,以轴的非负半轴为极轴且取相同单位长度建立极坐标系.

1)求直线的极坐标方程;

2)经过点且与直线垂直的直线交曲线两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形为矩形, ,的中点,沿折起,得到四棱锥,的中点为,在翻折过程中,得到如下有三个命题:

平面,且的长度为定值

三棱锥的最大体积为

③在翻折过程中,存在某个位置,使得.

其中正确命题的序号为__________.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)若函数有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知过原点的动直线与圆 相交于不同的两点

1)求圆的圆心坐标;

2)求线段的中点的轨迹的方程;

3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案