精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2-x-2<0},B={x||x|<1},则A∩(∁RB)=(  )
A、(1,2)
B、(1,2]
C、[1,2)
D、[1,2]
考点:交、并、补集的混合运算
专题:集合
分析:求出A与B中不等式的解集确定出A与B,根据全集R求出B的补集,找出A与B补集的交集即可.
解答: 解:由A中不等式变形得:(x-2)(x+1)<0,
解得:-1<x<2,即A=(-1,2);
由B中方程解得:-1<x<1,即B=(-1,1),
∵全集为R,∴∁RB=(-∞,-1]∪[1,+∞),
则A∩(∁RB)=[1,2),
故选:C.
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“x<0”是“x<1”的
 
条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”的其中之一)

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
<0”是“
a
b
夹角为钝角”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i是虚数单位,m.n∈R,则“m=n=1”是“(m-ni)2=-2i”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

若lg2=a,lg3=b,则log212等于(  )
A、
2a+b
1+a
B、
a+2b
1+a
C、
2a+b
a
D、
a+2b
1-a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的值域是[-2,3],则函数f(x+2)的值域是(  )
A、[-4,1]
B、[0,5]
C、[-4,1]∪[0,5]
D、[-2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=2tan(
x
3
+
π
6
)的图象向左平移
π
4
个单位,再向下平移1个单位,得到函数g(x)的图象,则g(x)的解析式为(  )
A、g(x)=2tan(
x
3
+
π
4
)-1
B、g(x)=2tan(
x
3
-
π
4
)+1
C、g(x)=2tan(
x
3
-
π
12
)+1
D、g(x)=2tan(
x
3
-
π
12
)-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={0,1,2},N={x|x2=2x},则A∩B=(  )
A、{0,1,2}B、{0,2}
C、{2}D、{0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(0,+∞),若y=
f(x)
x
在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=
f(x)
x2
在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.
我们把所有“一阶比增函数”组成的集合记为Ω1,所有“二阶比增函数”组成的集合记为Ω2
(1)已知函数f(x)=x3-2hx2-hx,若f(x)∈Ω1且f(x)∉Ω2,求实数h的取值范围;
(2)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函数值由下表给出,求证:d(2d+t-4)>0;
xabca+b+c
f(x)ddt4
(3)定义集合ψ={f(x)|f(x)∈Ω2,且存在常数k,使得任取x∈(0,+∞),f(x)<k},请问:是否存在常数M,使得?f(x)∈ψ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案