精英家教网 > 高中数学 > 题目详情
12.连续抛掷两次质地均匀的骰子得到的点数分别为m和n.
①设向量$\overrightarrow{a}$=(m,n),向量$\overrightarrow{b}$=(2,-2),若“$\overrightarrow{a}$•$\overrightarrow{b}$>0”记为事件A,求P(A)的值;
②求点A(m,n)落在区域x2+y2≤16内的概率.

分析 ①先求出基本事件总数,再用列举法求出事件A包含的基本事件个数,由此能求出P(A).
②利用列举法求出点A(m,n)落在区域x2+y2≤16内的基本基本事件个数,由此能求出点A(m,n)落在区域x2+y2≤16内的概率.

解答 解:①连续抛掷两次质地均匀的骰子得到的点数分别为m和n,
基本事件总数n=6×6=36个,
∵向量$\overrightarrow{a}$=(m,n),向量$\overrightarrow{b}$=(2,-2),“$\overrightarrow{a}$•$\overrightarrow{b}$>0”记为事件A,
∴2m-2n>0,即m>n,
∴事件A包含的基本事件有:
(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),
(5,3),(5,4),(6,1),(6,2),(6,3),(6,4),(6,5),共15个,
∴P(A)=$\frac{15}{36}$=$\frac{5}{12}$.
②点A(m,n)落在区域x2+y2≤16内的基本基本事件有:
(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8个,
∴点A(m,n)落在区域x2+y2≤16内的概率p=$\frac{8}{36}=\frac{2}{9}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在△ABC中,∠BAC=120°,AD为角A的平分线,AC=3,AB=6,则AD的长是(  )
A.2B.2或4C.1或2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线x2=4y的焦点为F,P为该抛物线在第一象限内的图象上的一个动点
(Ⅰ)当|PF|=2时,求点P的坐标;
(Ⅱ)求点P到直线y=x-10的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数y=f(x)的定义域为[-1,1],求函数y=f(x+$\frac{1}{2}$)•f(x-$\frac{1}{2}$)的定义域为[-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.有3个男生和3个女生.
(1)若6人站成一排,求男生甲必须站在两端的排法数;
(2)若6人站成前后两排,每排3人,求前排恰有一位女生的排法数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=Asin(ωx+φ)(A>0,x∈R,ω>0,0≤φ<π)的部分图象如图所示,则A=1,ω=$\frac{π}{4}$,φ=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是用相同规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第20个图案中需用黑色瓷砖块数为(  )
A.148B.126C.102D.88

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.从0、2、4、6、8这五个数字中任取2个,从1、3、5、7、9这五个数字中任取1个.
(1)问能组成多少个没有重复数字的三位数?
(2)求在(1)中的这些三位数中任取一个三位数恰好能被5整除的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在正方体ABCD-A1B1C1D1中,二面角A1-BD-C的正切值为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{3}}{2}$C.-$\sqrt{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案