精英家教网 > 高中数学 > 题目详情
在整数集Z中,被4除所得余数k的所有整数组成一个“类”,记为[k],即[k]={4n+k|n∈Z},K=0,1,2,3.给出如下四个结论:①2013∈[1];    ②-2∈[2];    ③Z=[0]∪[1]∪[2]∪[3];    ④若“整数a,b属于同一‘类’”,则“a-b∈[0]”.
其中正确的个数为
4
4
分析:依据“类”这个新定义,对各个选项进行分析验证即可得到答案.
解答:解:①∵2013÷4=504…1,∴2013∈[1],故①正确;
②∵-2=4×(-1)+2,∴-2∈[2],故②正确;
③因为整数集中的数被4除的数可以且只可以分成四类,
所以Z=[0]∪[1]∪[2]∪[3],故③正确;
④∵整数a,b属于同一“类”,∴整数a,b被5除的余数相同,从而a-b被5除的余数为0,
反之也成立,故“整数a,b属于同一“类”的充要条件是“a-b∈[0]”.故④正确.
故答案为:4.
点评:本题为同余的性质的考查,具有一定的创新,关键是对题中“类”的题解,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2011∈[1];   
②-3∈[3];   
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.
其中,正确结论的是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},b=0,1,2,3,4,则下列结论正确的为
①③④
①③④
(写出所有正确的编号)
①2013∈[3];
②-1∈[3];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一类”的充要条件是“a-b∈[0]”;
⑤命题“整数a,b满足a∈[1],b∈[3],则a+b∈[4]”的原命题与逆命题都为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

在整数集z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],则[k]=[5n+k],k=0,1,2,3,4,则下列结论错误的是(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省邢台一中高一(上)第一次月考数学试卷(解析版) 题型:填空题

在整数集Z中,被4除所得余数k的所有整数组成一个“类”,记为[k],即[k]={4n+k|n∈Z},K=0,1,2,3.给出如下四个结论:①2013∈[1];    ②-2∈[2];    ③Z=[0]∪[1]∪[2]∪[3];    ④若“整数a,b属于同一‘类’”,则“a-b∈[0]”.
其中正确的个数为   

查看答案和解析>>

同步练习册答案