4£®Ô²CµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{2}cos£¨¦È+\frac{3}{4}¦Ð£©$£¬¼«×ø±êϵµÄ¼«µãÓëÖ±½Ç×ø±êϵµÄÔ­µãÖغϣ¬¼«ÖáÓëxÖáµÄ·Ç¸º°ëÖáÖغϣ¬ÇÒ³¤¶Èµ¥Î»Ïàͬ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨1£©ÇóCµÄÖ±½Ç×ø±ê·½³Ì¼°Ô²Ðĵļ«×ø±ê
£¨2£©lÓëC½»ÓÚA£¬BÁ½µã£¬Çó|AB|

·ÖÎö £¨1£©ÓÉÁ½½ÇºÍÓë²îµÄÓàÏÒº¯Êý¼°¦Ñ2=x2+y2£¬¦Ñcos¦È=x£¬¦Ñsin¦È=y£¬ÄÜÇó³öCµÄÖ±½Ç×ø±ê·½³ÌºÍÔ²ÐĵÄÖ±½Ç×ø±ê£¬ÓÉ´ËÄÜÇó³öÔ²Ðĵļ«×ø±ê£®
£¨2£©ÏÈÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌºÍÔ²ÐÄC£¨-1£¬-1£©µ½Ö±ÏßlµÄ¾àÀëd£¬ÓÉ´ËÀûÓù´¹É¶¨ÀíÄÜÇó³ö|AB|£®

½â´ð ½â£º£¨1£©¡ßÔ²CµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{2}cos£¨¦È+\frac{3}{4}¦Ð£©$
¡à¦Ñ=$2\sqrt{2}£¨-\frac{{\sqrt{2}}}{2}cos¦È-\frac{{\sqrt{2}}}{2}sin¦È£©$=-2cos¦È-2sin¦È£¬
¡à¦Ñ2=-2¦Ñcos¦È-2¦Ñsin¦È£¬
ÓɦÑ2=x2+y2£¬¦Ñcos¦È=x£¬¦Ñsin¦È=y£¬
µÃµ½CµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=-2x-2y£¬¼´£¨x+1£©2+£¨y+1£©2=2
¡ßÔ²ÐÄ£¨-1£¬-1£©£¬
¡à$¦Ñ=\sqrt{£¨-1£©^{2}+£¨-1£©^{2}}$=$\sqrt{2}$£¬¦È=$\frac{5¦Ð}{4}$£¬¡àÔ²Ðĵļ«×ø±êΪ$£¨\sqrt{2}£¬\frac{5¦Ð}{4}£©$
£¨2£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊýµÃµ½Ö±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y+1=0£¬
Ô²ÐÄC£¨-1£¬-1£©µ½Ö±ÏßlµÄ¾àÀ룺d=$\frac{|-1-1+1|}{\sqrt{1+1}}$=$\frac{\sqrt{2}}{2}$£¬
¡ß$d=\frac{{\sqrt{2}}}{2}$£¬r=$\sqrt{2}$£¬lÓëC½»ÓÚA£¬BÁ½µã£¬
¡à$|{AB}|=2\sqrt{2-\frac{1}{2}}=\sqrt{6}$£®

µãÆÀ ±¾Ì⿼ԲµÄÖ±½Ç×ø±ê·½³ÌºÍÔ²Ðĵļ«×ø±êµÄÇ󷨣¬¿¼²éÖ±ÏßÓëÔ²ÏཻµÄÏཻÏÒµÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÔ²µÄÐÔÖÊ¡¢¼«×ø±êºÍÖ±½Ç×ø±êת»¯¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®µÈ±ÈÊýÁÐ{an}ÖУ¬a1=3£¬a4=24£¬ÉèÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄÇ°nÏîºÍΪSn£¬ÔòS8µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{85}{128}$B£®$\frac{21}{64}$C£®$\frac{63}{128}$D£®$\frac{35}{64}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬BC=3£®AC=$\frac{3}{2}$$\sqrt{2}$£¬B=$\frac{¦Ð}{6}$£¬¡ÏBAC$£¾\frac{¦Ð}{2}$£¬AE£¬AFÊÇ¡ÏBACµÄÈýµÈ·Ö½Çƽ·ÖÏߣ¬·Ö±ð½»BCÓÚµãE£¬F£®
£¨1£©Çó½ÇCµÄ´óС£»
£¨2£©ÇóÏ߶ÎEFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªÊýÁÐ{an}ÖÐa1=1£¬¹ØÓÚxµÄ·½³Ìx2-an+1•tan£¨cosx£©+£¨2an+1£©•tan1=0ÓÐΨһ½â£¬Éèbn=nan£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍΪSn£¬ÔòS9=£¨¡¡¡¡£©
A£®8143B£®8152C£®8146D£®8149

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªµã£¨a£¬b£©ÔÚÔ²£¨x-1£©2+£¨y-1£©2=1ÉÏ£¬ÔòabµÄ×î´óÖµÊÇ$\frac{{3+2\sqrt{2}}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=ex-axÒ»1£¨a¡ÊR£©£®
£¨I£©ÌÖÂÛº¯Êýy=f£¨x£©µÄµ¥µ÷ÐÔ²¢ÇóÆäµ¥µ÷Çø¼ä£»
£¨¢ò£©Èôº¯ÊýF£¨x£©=f£¨x£©-x1nxÔÚ¶¨ÒåÓòÄÚ´æÔÚÁãµã£¬ÊÔÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Èôg£¨x£©=1n£¨ex-1£©-lnx£¬ÇÒf[g£¨x£©]£¼f£¨x£©ÔÚx¡Ê£¨0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®É躯Êýh£¨x£©=x2-mx£¬g£¨x£©=lnx£®
£¨¢ñ£©Éèf£¨t£©=m${¡Ò}_{\frac{¦Ð}{2}}^{t}$£¨sinx+cosx£©dxÇÒf£¨2016¦Ð£©=2£¬Èôº¯Êýh£¨x£©Óëg£¨x£©ÔÚx=x0´¦µÄÇÐÏßƽÐУ¬ÇóÕâÁ½ÇÐÏß¼äµÄ¾àÀ룻
£¨¢ò£©ÈÎÒâx£¾0£¬²»µÈʽh£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªµãA£¨4£¬3£©£¬PÊÇË«ÇúÏßx2-y2=2ÓÒÖ§ÉÏÒ»µã£¬FΪ˫ÇúÏßµÄÓÒ½¹µã£¬Ôò|PA|+|PF|µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®$2\sqrt{5}-3$B£®$3\sqrt{5}-2\sqrt{2}$C£®$3\sqrt{2}+2$D£®$2\sqrt{5}+\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x-y¡Ý0\\ x+y¡Ü1\\ y¡Ý-1\end{array}\right.$£¬Ôò2x+yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®-3B£®$\frac{1}{2}$C£®$\frac{3}{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸