精英家教网 > 高中数学 > 题目详情
2.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的表面积是(  )
A.$1+\sqrt{5}$B.$2+\sqrt{5}$C.$1+2\sqrt{5}$D.$2+2\sqrt{5}$

分析 由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,由图中数据求出三棱锥的表面积.

解答 解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,
则三棱锥的表面积是$\frac{1}{2}×2×2$+$\frac{1}{2}×2×\sqrt{5}$+2×$\frac{1}{2}×\sqrt{5}×1$=2+2$\sqrt{5}$,
故选D.

点评 本题考查由三视图求面积,考查学生的计算能力,确定直观图的形状是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=|x+3|+2,g(x)=kx+1,若方程f(x)=g(x)有两个不相等的实根,则实数a的取值范围是(  )
A.(-$\frac{1}{3}$,+∞)B.($\frac{1}{3}$,1)C.(-∞,-$\frac{1}{3}$)D.(-1,-$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设方程2x+x+2=0和方程log2x+x+2=0的根分别为p和q,函数f (x)=(x+p)(x+q)+2,则f (2),f (0),f (3)的大小关系为f(3)>f(2)=f(0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数z满足z=(5+2i)2,则z的共轭复数在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}$(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换$\left\{{\begin{array}{l}{x'=\frac{1}{3}x}\\{y'=\frac{1}{2}y}\end{array}}$得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.
(1)写出曲线C与曲线C'的极坐标的方程; 
(2)若过点$A({2\sqrt{2},\frac{π}{4}})$(极坐标)且倾斜角为$\frac{π}{3}$的直线l与曲线C交于M,N两点,弦MN的中点为P,求$\frac{|AP|}{|AM|•|AN|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数y=f(x)的图象的顶点坐标为$({-1,-\frac{1}{3}})$,且过坐标原点O,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)在二次函数y=f(x)的图象上.
(1)求数列{an}的表达式;
(2)设bn=an•an+1cos(n+1)π(n∈N*),数列{bn}的前n项和为Tn,若Tn≥m2对n∈N*恒成立,求实数m的取值范围;
(3)在数列{an}中是否存在这样的一些项,an1,an2,an3,…nank,…(1=n1<n2<n3<…<nk<…k∈N*),这些项能够依次构成以a1为首项,q(0<q<5,q∈N*)为公比的等比数列{ank}?若存在,写出nk关于k的表达式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l经过点P(-2,5),且斜率为$-\frac{3}{4}$,若直线m与l平行且两直线间的距离为3,则直线m的方程为3x+4y+1=0,或 3x+4y-29=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人,
(1)根据以上数据建立一个2×2的列联表;
(2)判断是否能有95%的把握说晕机与性别有关?
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知定义域为[0,+∞)的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=-2x2+4x.设f(x)在[2n-2,2n)上的最大值为an(n∈N*),且数列{an}的前n项和为Sn,则Sn=4-$\frac{1}{{2}^{n-2}}$.

查看答案和解析>>

同步练习册答案