【题目】已知函数f(x)=cosxsin(x+)﹣cos2x+,x∈R.
(1)求f(x)的单调递增区间;
(2)在锐角△ABC中,角A,B,C的对边分别a,b,c,若f(A)=,a=,求△ABC面积的最大值.
【答案】(1) [kπ﹣,kπ+],k∈Z (2)
【解析】试题分析:(I)由两角和与差的正弦公式,二倍角的正弦公式与二倍角的余弦公式可将解析式化简为,由,可得的单调递增区间;(II)由题意可得,结合范围,解得的值,由余弦定理可得结合基本不等式可得,利用三角形面积公式即可得结果.
试题解析:(1)∵f(x)=cosxsin(x+)﹣cos2x+
=cosx(sinx+cosx)﹣cos2x+
=sinxcosx+cos2x﹣cos2x+
=sin2x﹣×+
=sin(2x﹣),
由2kπ﹣≤2x﹣≤2kπ+,k∈Z,解得f(x)的单调递增区间为:[kπ﹣,kπ+],k∈Z.
(2)∵f(A)=sin(2A﹣)=,解得:sin(2A﹣)=,
∵0,﹣<2A﹣<,
∴解得:2A﹣=,即A=.
∴由余弦定理可得:3=b2+c2﹣2bccosA=b2+c2﹣bc≥2bc﹣bc=bc,
∴S△ABC=bcsinA=bc≤=.
科目:高中数学 来源: 题型:
【题目】某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组,第二组,,第五组,下图是按上述分组方法得到的频率分布直方图.
(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;
(2)请估计学校1800名学生中,成绩属于第四组的人数;
(3)请根据频率分布直方图,求样本数据的众数和中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A,B两点,连接PA并延长,交圆O于点C,连续PB交圆O于点D,若MC=BC.
(1)求证:△APM∽△ABP;
(2)求证:四边形PMCD是平行四边形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=2ln(x+2)﹣(x+1)2 , g(x)=k(x+1).
(1)求f(x)的单调区间;
(2)当k=2时,求证:对于x>﹣1,f(x)<g(x)恒成立;
(3)若存在x0>﹣1,使得当x∈(﹣1,x0)时,恒有f(x)>g(x)成立,试求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95)由此得到频率分布直方图如图.则产品数量位于[55,65)范围内的频率为;这20名工人中一天生产该产品数量在[55,75)的人数是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等边三角形的中线与中位线相交于,已知是绕旋转过程中的一个图形,下列命题中,错误的是
A. 恒有⊥
B. 异面直线与不可能垂直
C. 恒有平面⊥平面
D. 动点在平面上的射影在线段上
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线.
(1)若直线与直线平行,求实数的值;
(2)若, ,点在直线上,已知的中点在轴上,求点的坐标.
【答案】(1);(2)
【解析】试题分析:(1)根据两直线平行,对应方向向量共线,列方程即可求出的值;(2)根据时,直线的方程设出点的坐标,由此求出的中点坐标,再由中点在轴上求出点的坐标.
试题解析:(1)∵直线与直线平行,
∴,
∴,经检验知,满足题意.
(2)由题意可知: ,
设,则的中点为,
∵的中点在轴上,∴,
∴.
【题型】解答题
【结束】
16
【题目】在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,-4).
(1)求BC边上的中线所在直线的方程;
(2)求BC边上的高所在直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com