精英家教网 > 高中数学 > 题目详情

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.该公司将最近承揽的件包裹的重量统计如下:

包裹重量(单位:

包裹件数

公司对近天,每天揽件数量统计如下表:

包裹件数范围

包裹件数

(近似处理)

天数

以上数据已做近似处理,并将频率视为概率.

(1)计算该公司未来天内恰有天揽件数在之间的概率;

(2)(i)估计该公司对每件包裹收取的快递费的平均值;

(ii)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员人,每人每天揽件不超过件,工资元.公司正在考虑是否将前台工作人员裁减人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?

【答案】(1) ;(2)(i)15元;(ii)答案见解析.

【解析】试题分析: 先计算出包裹件数在之间的天数为,然后得到频率,估计出概率,运用二项分布求出结果(2)运用公式求出每件包裹收取的快递费的平均值(3)先将天数转化为频率,分别计算出不裁员和裁员两种情况的利润,从而作出比较

解析:(1)样本包裹件数在之间的天数为,频率

故可估计概率为

显然未来天中,包裹件数在之间的天数服从二项分布,

,故所求概率为.

(2)(i)样本中快递费用及包裹件数如下表:

包裹重量(单位:

快递费(单位:元)

包裹件数

故样本中每件快递收取的费用的平均值为(元),

故该公司对每件快递收取的费用的平均值可估计为元.

(ii)根据题意及(2)(i),揽件数每增加,可使前台工资和公司利润增加(元),

将题目中的天数转化为频率,得

包裹件数范围

包裹件数

(近似处理)

天数

频率

若不裁员,则每天可揽件的上限为件,公司每日揽件数情况如下:

包裹件数

(近似处理)

实际揽件数

频率

故公司平均每日利润的期望值为(元);

若裁员人,则每天可揽件的上限为件,公司每日揽件数情况如下:

包裹件数

(近似处理)

实际揽件数

频率

故公司平均每日利润的期望值为(元).

,故公司将前台工作人员裁员人对提高公司利润不利.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四条直线两两相交,且不共点,求证:这四条直线在同一平面内.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

1)求的值并判断的单调性;

2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 (nN*)的展开式中第五项的系数的与第三项的系数的比是101.

(1)求展开式中各项系数的和;

(2)求展开式中含的项;

(3)求展开式中系数最大的项和二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到了如表的列联表:

患心肺疾病

不患心肺疾病

合计

5

10

合计

50

已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.

参考格式:,其中 .

下面的临界值仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(1)请将上面的列联表补充完整;

(2)是否有99%的把握认为患心肺疾病与性别有关?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,有以下结论:

时,甲走在最前面;

时,乙走在最前面;

,丁走在最前面,当时,丁走在最后面;

丙不可能走在最前面,也不可能走在最后面;

如果它们一直运动下去,最终走在最前面的是甲.

其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,且三点中恰有两点在抛物线上,另一点是抛物线的焦点.

(1)求证:三点共线;

(2)若直线过抛物线的焦点且与抛物线交于两点,点轴的距离为,点轴的距离为,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足,若恒成立,则实数的取值范围为______

查看答案和解析>>

同步练习册答案