【题目】已知命题:“,”,命题:“ ,”.若命题“”是真命题,则实数的取值范围是( )
A. 或 B.
C. D.
【答案】D
【解析】
当命题为p真时,此问题为恒成立问题,用最值法,转化为当x∈[1,2]时,(x2﹣a)min≥0,可求出 a≤1,当命题q为真时,为二次方程有解问题,用“△”判断,可得a≤﹣2或a≥1,又命题“¬p且q”是真命题,所以p假q真,对a求交集,可求出实数a的范围.
解:当命题为p真时,即:“x∈[1,2],x2﹣a≥0“,即当x∈[1,2]时,(x2﹣a)min≥0,
又当x=1时,x2﹣a取最小值1﹣a,
所以1﹣a≥0,
即a≤1,
当命题q为真时,即:x∈R,x2+2ax+2﹣a=0,
所以△=4a2﹣4(2﹣a)≥0,
所以a≤﹣2,或a≥1,
又命题“¬p且q”是真命题,
所以p假q真,
即,
即实数a的取值范围是:a>1,
故选:D.
科目:高中数学 来源: 题型:
【题目】某市2011年至2017年新开楼盘的平均销售价格(单位:千元/平方米)的统计数据如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售价格 | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(1)求关于x的线性回归方程;
(2)利用(1)中的回归方程,分析2011年至2017年该市新开楼盘平均销售价格的变化情况,并预测该市2019年新开楼盘的平均销售价格。
附:参考公式: ,,其中为样本平均值。
参考数据: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:
大棚面积(亩) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利润(万元) | 6 | 7 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且与有很强的线性相关关系.
(Ⅰ)求关于的线性回归方程;
(Ⅱ)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;
(Ⅲ)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?
参考数据: , .
参考公式: , .
【答案】(Ⅰ).(Ⅱ)大约为11.442万元.(Ⅲ)种植彩椒比较好.
【解析】【试题分析】(I)利用回归直线方程计算公式计算出回归直线方程.(II)将代入求得当年利润的估计值.(III)通过计算平均数和方差比较种植哪种蔬菜好.
【试题解析】
(Ⅰ), , ,
,
,
那么回归方程为: .
(Ⅱ)将代入方程得
,即小明家的“超级大棚”当年的利润大约为11.442万元.
(Ⅲ)近5年来,无丝豆亩平均利润的平均数为,
方差 .
彩椒亩平均利润的平均数为,
方差为 .
因为, ,∴种植彩椒比较好.
【题型】解答题
【结束】
19
【题目】如图,四棱锥中, 为等边三角形,且平面平面, , , .
(Ⅰ)证明: ;
(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某城市居民用水量情况,我们抽取了100位居民某年的月均用水量(单位:吨)并对数据进行处理,得到该100位居民月均用水量的频率分布表,并绘制了频率分布直方图(部分数据隐藏).
(1)确定表中的与的值;
(2)在上述频率分布直方图中,求从左往右数第4个矩形的高度;
(3)在频率分布直方图中画出频率分布折线图.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某海产品经销商调查发现,该海产品每售出吨可获利万元,每积压吨则亏损万元.根据往年的数据,得到年需求量的频率分布直方图如图所示,将频率视为概率.
(1)请补齐上的频率分布直方图,并依据该图估计年需求量的平均数;
(2)今年该经销商欲进货吨,以(单位:吨, )表示今年的年需求量,以(单位:万元)表示今年销售的利润,试将表示为的函数解析式;并求今年的年利润不少于万元的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com