精英家教网 > 高中数学 > 题目详情
(2013•浙江)设m、n是两条不同的直线,α、β是两个不同的平面,(  )
A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β
C
A、m∥α,n∥α,则m∥n,m与n可能相交也可能异面,所以A不正确;
B、m∥α,m∥β,则α∥β,还有α与β可能相交,所以B不正确;
C、m∥n,m⊥α,则n⊥α,满足直线与平面垂直的性质定理,故C正确.
D、m∥α,α⊥β,则m⊥β,也可能m∥β,也可能m∩β=A,所以D不正确;
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点.
(1)求证:PA//平面BDM;
(2)求直线AC与平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正四棱柱中,的中点.
(1)求证:平面
(2)求证:
(3)在线段上是否存在点,当时,平面平面?若存在,求出的值并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

等边三角形的边长为3,点分别是边上的点,且满足(如图1).将△沿折起到△的位置,使二面角成直二面角,连结 (如图2).
(1)求证:平面
(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是边长为1的正方形,,点E在棱PB上.

(1)求证:平面
(2)当且E为PB的中点时,求AE与平面PDB
所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在三棱柱中,,点分别是的中点.
 
(1)求证:平面∥平面
(2)求证:平面⊥平面
(3)若,求异面直线所成的角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,点O为正方体ABCD-A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(写出所有可能的图的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

教室内有一把直尺,无论怎样放置,地面上总有这样的直线与该直尺所在直线 (  ).
A.平行B.异面C.垂直 D.相交但不垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n是不同的直线,α、β是不同的平面,下列四个命题中正确的是(  )
A.若m∥α,n∥α,则m∥n
B.若m⊥β,n⊥β,则m∥n
C.若α⊥β,m?α,则m⊥β
D.若m?α,n?α,m∥β,n∥β,则α∥β

查看答案和解析>>

同步练习册答案