【题目】已知函数.
(1)讨论函数的单调性;
(2)当函数仅有极小值时,不等实数满足.证明:.
【答案】(1)见详解;(2)证明见详解.
【解析】
(1)求出函数的导函数,对参数进行分类讨论,判断对应情况下导数的符号,即可求得单调性;
(2)根据(1)中所求,可知,构造函数,通过求解的单调性,利用,即可证明.
(1),
当时,,由得,由得;
当时,,
由得或,由得;
当时,,
由得或,由得;
当时,恒成立,
综上得:
当时,函数在区间上单调递减,在上单调递增;
当时,函数在上单调递减,
在,上单调递增;
当时,函数在上单调递减,
在,上单调递增;
当时,函数在上单调递增.
(2)由(1)可知时,函数仅有极小值.不妨设,
要使,则,.
令,
则,
当时,,∴函数在上单调递增,
∴当时,,即,
∴,
∵,∴,
∵,,函数在区间上单调递减,
∴,即,
∴.即证.
科目:高中数学 来源: 题型:
【题目】随着甜品的不断创新,现在的甜品无论是造型还是口感都十分诱人,有颜值、有口味、有趣味的产品更容易得到甜品爱好者的喜欢,创新已经成为烘焙作品的衡量标准.某“网红”甜品店生产有几种甜品,由于口味独特,受到越来越多人的喜爱,好多外地的游客专门到该甜品店来品尝“打卡”,已知该甜品店同一种甜品售价相同,该店为了了解每个种类的甜品销售情况,专门收集了该店这个月里五种“网红甜品”的销售情况,统计后得如下表格:
甜品种类 | A甜品 | B甜品 | C甜品 | D甜品 | E甜品 |
销售总额(万元) | 10 | 5 | 20 | 20 | 12 |
销售额(千份) | 5 | 2 | 10 | 5 | 8 |
利润率 | 0.4 | 0.2 | 0.15 | 0.25 | 0.2 |
(利润率是指:一份甜品的销售价格减去成本得到的利润与该甜品的销售价格的比值.)
(1)从该甜品店本月卖出的甜品中随机选一份,求这份甜品的利润率高于0.2的概率;
(2)从该甜品店的五种“网红甜品”中随机选取2种不同的甜品,求这两种甜品的单价相同的概率;
(3)假设每类甜品利润率不变,销售一份A甜品获利元,销售一份B甜品获利元,…,销售一份E甜品获利元,依据上表统计数据,随机销售一份甜品获利的期望为,设,试判断与的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大城市一家餐饮企业为了了解外卖情况,统计了某个送外卖小哥某天从9:00到21:00这个时间段送的50单外卖.以2小时为一时间段将时间分成六段,各时间段内外卖小哥平均每单的收入情况如下表,各时间段内送外卖的单数的频率分布直方图如下图.
时间区间 | ||||||
每单收入(元) | 6 | 5.5 | 6 | 6.4 | 5.5 | 6.5 |
(Ⅰ)求频率分布直方图中的值,并求这个外卖小哥送这50单获得的收入;
(Ⅱ)在这个外卖小哥送出的50单外卖中男性订了25单,且男性订的外卖中有20单带饮品,女性订的外卖中有10单带饮品,请完成下面的列联表,并回答是否有的把握认为“带饮品和男女性别有关”?
带饮品 | 不带饮品 | 总计 | |
男 | |||
女 | |||
总计 |
附:
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着甜品的不断创新,现在的甜品无论是造型还是口感都十分诱人,有颜值、有口味、有趣味的产品更容易得到甜品爱好者的喜欢,创新已经成为烘焙作品的衡量标准.某“网红”甜品店生产有几种甜品,由于口味独特,受到越来越多人的喜爱,好多外地的游客专门到该甜品店来品尝“打卡”,已知该甜品店同一种甜品售价相同,该店为了了解每个种类的甜品销售情况,专门收集了该店这个月里五种“网红甜品”的销售情况,统计后得如下表格:
甜品种类 | A甜品 | B甜品 | C甜品 | D甜品 | E甜品 |
销售总额(万元) | 10 | 5 | 20 | 20 | 12 |
销售额(千份) | 5 | 2 | 10 | 5 | 8 |
利润率 | 0.4 | 0.2 | 0.15 | 0.25 | 0.2 |
(利润率是指:一份甜品的销售价格减去成本得到的利润与该甜品的销售价格的比值.)
(1)从该甜品店本月卖出的甜品中随机选一份,求这份甜品的利润率高于0.2的概率;
(2)假设每类甜品利润率不变,销售一份A甜品获利元,销售一份B甜品获利元,…,销售一份E甜品获利元,设,若该甜品店从五种“网红甜品”中随机卖出2种不同的甜品,求至少有一种甜品获利超过的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某网店经营各种儿童玩具,该网店老板发现该店经销的一种手腕可以摇动的款芭比娃娃玩具在某周内所获纯利(元)与该周每天销售这种芭比娃娃的个数(个)之间的关系如下表:
每天销售芭比娃娃个数(个) | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
该周内所获纯利(元) | 66 | 69 | 74 | 81 | 89 | 90 | 91 |
(1)由表中数据可推测线性相关,求出回归直线方程;
(2)请你预测当该店每天销售这种芭比娃娃20件时,每周获纯利多少?
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行四边形中,,,过点作的垂线,交的延长线于点,.连结,交于点,如图1,将沿折起,使得点到达点的位置,如图2.
(1)证明:平面平面;
(2)若为的中点,为的中点,且平面平面,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】奇函数f(x)在R上存在导数,当x<0时,f(x),则使得(x2﹣1)f(x)<0成立的x的取值范围为( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com