精英家教网 > 高中数学 > 题目详情

【题目】我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数的解析式来琢磨函数的图象特征.如函数的图象大致为(

A.B.

C.D.

【答案】B

【解析】

根据题意,设fx,分析函数的奇偶性可以排除AD,结合复合函数单调性的判断方法分析可得函数yfx)为增函数,排除C;即可得答案.

根据题意,设fx,有f(﹣x)=fx),即函数fx)为偶函数,排除AD

tcosx,则y=﹣2t2+t+1

在区间[0]上,tcosx为减函数,且0t1

y=﹣2t2+t+1,其对称轴为t,开口向下,在区间(﹣∞,)上为增函数,(,+∞)上为减函数,

在区间(0,arccos)上,tcosx为减函数,此时t1,函数y=﹣2t2+t+1为减函数,

故函数yfx)为增函数,排除C

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两人在相同条件下各射击次,每次中靶环数情况如图所示:

1)请填写下表(先写出计算过程再填表):

平均数

方差

命中环及环以上的次数

2)从下列三个不同的角度对这次测试结果进行

①从平均数和方差相结合看(分析谁的成绩更稳定);

②从平均数和命中环及环以上的次数相结合看(分析谁的成绩好些);

③从折线图上两人射击命中环数的走势看(分析谁更有潜力).

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障,下图是某公司从2010年到2019年这10年研发投入的数据分布图:

其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).

(I)2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;

(II)2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;

(III)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数aRa0.

1)当a时,求曲线yfx)在点(1f1))处的切线方程;

2)讨论函数fx)的单调性与单调区间;

3)若yfx)有两个极值点x1x2,证明:fx1+fx2)<9lna.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F为椭圆ab0)的一个焦点,点A为椭圆的右顶点,点B为椭圆的下顶点,椭圆上任意一点到点F距离的最大值为3,最小值为1.

1)求椭圆的标准方程;

2)若MN在椭圆上但不在坐标轴上,且直线AM∥直线BN,直线ANBM的斜率分别为k1k2,求证:k1k2e21e为椭圆的离心率).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春节期间,新型冠状病毒(2019nCoV)疫情牵动每一个中国人的心,危难时刻全国人民众志成城.共克时艰,为疫区助力.我国SQ市共100家商家及个人为缓解湖北省抗疫消毒物资压力,募捐价值百万的物资对口输送湖北省H市.

1)现对100家商家抽取5家,其中2家来自A地,3家来自B地,从选中的这5家中,选出3家进行调研.求选出3家中1家来自A地,2家来自B地的概率.

2)该市一商家考虑增加先进生产技术投入,该商家欲预测先进生产技术投入为49千元的月产增量.现用以往的先进技术投入xi(千元)与月产增量yi(千件)(i123,…,8)的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且:,其中,,根据所给的统计量,求y关于x回归方程,并预测先进生产技术投入为49千元时的月产增量.

附:对于一组数据(u1v1)(u2v2),其回归直线vα+βu的斜率和截距的最小二乘法估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数的解析式来琢磨函数的图象特征.如函数的图象大致为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的极值点;

2)定义:若函数的图像与直线有公共点,我们称函数有不动点.这里取:,若,如果函数存在不动点,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列四个结论:

①函数的最小正周期是

②函数在区间上是减函数;

③函数的图象关于直线对称;

④函数的图象可由函数的图象向左平移个单位得到其中所有正确结论的编号是(

A.①②B.①③C.①②③D.①③④

查看答案和解析>>

同步练习册答案