精英家教网 > 高中数学 > 题目详情
若a2+b2+c2=1,则a+2b+3c的最大值为
14
14
分析:首先分析题目已知a2+b2+c2=1,求a+2b+3c的最大值,考虑到柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2的应用,构造出柯西不等式求出(a+2b+3c)2的最大值开方即可得到答案.
解答:解:因为已知a、b、c是实数,且a2+b2+c2=1根据柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2
故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2
故(a+2b+3c)2≤14,即2a+b+2c≤
14

即a+2b+3c的最大值为
14

故答案为:
14
点评:此题主要考查一般形式的柯西不等式的应用,对于此类题目很多同学一开始就想到应用球的参数方程求解,这个方法可行但是计算量较高,而应用柯西不等式求解较简单,同学们需要很好的理解掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c所对的角分别为A、B、C,若a2+b2-c2+
2
ab=0
,则角C的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c所对的角分别为A、B、C,若a2+b2-c2+
2
ab=0,则角C的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为内角A,B,C的对边,若a2=b2+c2+bc,且sinB+sinC=1,则角B=
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题“若a2+b2+c2=0,则a=b=c=0”时,第一步应假设(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若a2=b2+c2-bc,则A=
3
3

查看答案和解析>>

同步练习册答案