精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3-2ax2+x
(1)若函数f(x)在(1,+∞)上为增函数,求实数a的最大值;
(2)当x∈(0,+∞)时,f(x)≥ax恒成立,求a的取值范围.

解:(1)f′(x)=3x2-4ax+1,
∵f(x)在(1,+∞)上为增函数,
∴f′(x)=3x2-4ax+1≥0(x>1)恒成立,即(x>1)恒成立.
令h(x)=,得(x>1),
∴h(x)在(1,+∞)上单调递增,h(x)>h(1)==1,
∴a≤1,故实数a的最大值为1.
(Ⅱ)由题意知x3-2ax2+x≥ax(x>0)恒成立,即a(x>0)恒成立,
令r(x)=(x>0),则,由r′(x)<0得0<x;由r′(x)>0得x
∴r(x)在(0,)上单调递减,在上单调递增,∴=
∴a≤
故a的取值范围为
分析:(1)由函数f(x)在(1,+∞)上为增函数,得f′(x)≥0(x>1)恒成立,进而可转化为函数最值问题解决.
(2)f(x)≥ax即x3-2ax2+x≥ax(x>0)恒成立,可变为a(x>0)恒成立,只需y求出在(0,+∞)上的最小值即可.
点评:本题考查了利用导数研究函数的单调性、最值问题,对于恒成立问题常转化为最值问题或分离参数后再求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案