精英家教网 > 高中数学 > 题目详情
20.抛物线y=-$\frac{1}{8}{x^2}$的焦点坐标是(  )
A.$(-\frac{1}{2},0)$B.$(0,-\frac{1}{2})$C.(-2,0)D.(0,-2)

分析 先将抛物形式化简为标准形式,求出p的值,进而得到焦点坐标.

解答 解:抛物线的标准形式是x2=-8y,p=4
∴焦点坐标为:(0,-2)
故选:D,

点评 本题主要考查抛物线的性质.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.化简:
(1)$\frac{{a}^{\frac{2}{3}}•\sqrt{b}}{{a}^{-\frac{1}{2}}•\root{3}{b}}$÷($\frac{{a}^{-1}\sqrt{{b}^{-1}}}{b\sqrt{a}}$)${\;}^{-\frac{2}{3}}$;
(2)($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$•$\frac{(\sqrt{4a{b}^{-1}})^{3}}{0.{1}^{-2}({a}^{3}{b}^{-3})^{\frac{1}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=loga$\frac{1-mx}{1+x}$(a>0,且a≠1,m≠-1)是定义在区间(-1,1)上的奇函数,
(1)求f(0)的值和实数m的值;
(2)判断函数f(x)在区间(-1,1)上的单调性,并说明理由;
(3)若f($\frac{1}{2}$)>0且f(b-2)+f(2b-2)>0成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知:函数f(x)=$\sqrt{x}$-$\sqrt{x-1}$.
(Ⅰ)求f(1)+f(2)+…+f(2015)的值;
(Ⅱ)用分析法证明:f(x)<f(x-2)(x≥3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于四面体ABCD,以下命题中,真命题的序号为(  )
①若AB=AC,BD=CD,E为BC中点,则平面AED⊥平面ABC;
②若AB⊥CD,BC⊥AD,则BD⊥AC;
③若所有棱长都相等,则该四面体的外接球与内切球的半径之比为2:1;
④若以A为端点的三条棱所在直线两两垂直,则A在平面BCD内的射影为△BCD的垂心;
⑤分别作两组相对棱中点的连线,则所得的两条直线异面.
A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对于三角形的内角A、B、C,条件甲“sinA>sinB”是条件乙“cosA<cosB”成立的(  )
A.既不充分也不必要条件B.充要条件
C.充分不必要条件D.必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}{2-{x}^{2},x∈[-1,2]}\\{x-4,x∈(2,5]}\end{array}\right.$
(Ⅰ)在有图给定的直角坐标系内画出f(x)的草图,并写出f(x)的单调区间;
(Ⅱ)求满足f(x)<0的x的取值的集合;
(Ⅲ)若方程f(x)=k有两个解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|=2|{\overrightarrow a}|$,则向量$\overrightarrow a+\overrightarrow b$与$\overrightarrow a$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数$f(x)=cos(2πx+\frac{π}{3})$,若对任意x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案