精英家教网 > 高中数学 > 题目详情
计算:设全集为R,集合A={x|-1≤x<3},B={x||x|≤2}.
(1)求:A∪B,A∩B,CR(A∩B);
(2)若集合C={x|2x-a>0},满足B∪C=C,求实数a的取值范围.
分析:(1)由全集为R,集合A={x|-1≤x<3},B={x||x|≤2}={x|-2≤x≤2},能够求出A∪B,A∩B,CR(A∩B).
(2)由C={x|2x-a>0}={x|x>
a
2
,B∪C=C,知B⊆C,故
a
2
≤-2
,由此能求出实数a的取值范围.
解答:解:(1)∵全集为R,集合A={x|-1≤x<3},
B={x||x|≤2}={x|-2≤x≤2},
∴A∪B={x|-2≤x<3},
A∩B={x|-1≤x≤2},
CR(A∩B)={x|x<-1,或x>2}.
(2)∵C={x|2x-a>0}={x|x>
a
2
,B∪C=C,
∴B⊆C,
a
2
≤-2

解得a≤-4.
故实数a的取值范围(-∞,-4].
点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、设全集为R,集合A={x|-1<x<1},B={x|x≥1},则CR(A∪B)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为R,集合A={x||x-a|<2},B={x|
2x-1x+2
<1}
(Ⅰ)当a=2时,求A∩(?RB);
(Ⅱ)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为R,集合A={x|3≤x<7},集合B={x|2<x<8},求?R(A∪B)及(?RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为R,集合A={x|1≤x<7},B={x|x2-12x+20<0}.
(1)求集合A∪B;
(2)求(?UA)∩(?UB).

查看答案和解析>>

同步练习册答案