【题目】某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为9.
(1)分别求出m,n的值;
(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差s甲2和s乙2 , 并由此分析两组技工的加工水平.
【答案】
(1)解:∵两组技工在单位时间内加工的合格零件平均数都为9.
∴由茎叶图得: ,
解得m=6,n=8.
(2)解: = [(6﹣9)2+(7﹣9)2+(9﹣9)2+(11﹣9)2+(12﹣9)2]= .
= [(7﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(11﹣9)2]=2.
∵两组技工在单位时间内加工的合格零件平均数都为9, < ,
∴两组技工平均数相等,但乙组技工较稳定,故乙组技工加工水平高.
【解析】(1)根据茎叶图得到在单位时间内每个技工加工的合格零件数,根据平均数列出等式,分别计算出m,n,(2)根据方差公式求出甲,乙两组技工在单位时间内加工的合格零件的方差,由于S 乙 2 < S 甲 2,可得出 乙组技工加工水平高.
【考点精析】通过灵活运用茎叶图和极差、方差与标准差,掌握茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少;标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差即可以解答此题.
科目:高中数学 来源: 题型:
【题目】若圆C:(x﹣5)2+(y+1)2=m(m>0)上有且只有一点到直线4x+3y﹣2=0的距离为1,则实数m的值为( )
A.4
B.16
C.4或16
D.2或4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为m与p,且乙投球3次均未命中的概率为 ,甲投球未命中的概率恰是乙投球未命中的概率的2倍.
(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD-A1B1C1D1的棱长为a , M为BD1的中点,N在A1C1上,且满足|A1N|=3|NC1|.
(1)求MN的长;
(2)试判断△MNC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某工厂生产的P,Q两种型号的玻璃种分别随机抽取8个样品进行检查,对其硬度系数进行统计,统计数据用茎叶图表示(如图所示),则P组数据的众数和Q组数据的中位数分别为( )
A.22和22.5
B.21.5和23
C.22和22
D.21.5和22.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com