精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)满足:2f(x)+xf′(x)>x2,则f(x)在区间[-1,1]内(  )
A、没有零点
B、恰有一个零点
C、至少一个零点
D、至多一个零点
考点:利用导数研究函数的单调性,函数零点的判定定理,导数的运算
专题:导数的综合应用
分析:可构造函数g(x)=x2f(x),利用导数判断其单调性,即可得出结论.
解答: 解:令g(x)=x2f(x),则g′(x)=x[2f(x)+xf′(x)],
∵当x>0时,f(x)满足:2f(x)+xf′(x)>x2
∴xg′(x)=x[2f(x)+xf′(x)]>x3>0,
∴当x>0时,g(x)>g(0)=0,∴f(x)>0,
又∵函数f(x)是定义在R上的奇函数,
∴当x<0时,f(x)<0,
∴f(x)在区间[-1,1]内只有一个零点为x=0.
故选B.
点评:本题主要考查利用构造函数法判断函数零点的知识,合理的构造函数是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的不等式mx2-10x+2m2≤0的解集为A=[1,a],集合B={x|log2(x2-x)>1}.
(Ⅰ)求实数m,a的值;
(Ⅱ)求A∩B,(∁RA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是(  )
A、f(x)=(x-1)2
B、f(x)=
1
x
C、f(x)=ex
D、f(x)=lnx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且A∪B=A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:0.75-1×(
3
2
)
1
2
×(6
3
4
)
1
4
+10(
3
-2)-1+(
1
300
)-
1
2
+16
1
4
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
3
)-
3
cos(2x+
π
3
)+4sin2x,x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间[-
π
4
π
4
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD,底面ABCD是∠A=60°,边长为a的菱形,又PD⊥底面ABCD,且PD=CD,点M,N分别是棱AD,PC的中点.
(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD;
(3)三棱锥A-PBM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Atan(ωx+ϕ)(ω>0,|ϕ|<
π
2
)的部分图象如图,则f(
24
)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若2014a=
2014
9
,2014b=3,则a+2b等于(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案