精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦距为2,过点.

1)求椭圆的标准方程;

2)设椭圆的右焦点为,定点,过点且斜率不为零的直线与椭圆交于两点,以线段为直径的圆与直线的另一个交点为,试探究在轴上是否存在一定点,使直线恒过该定点,若存在,求出该定点的坐标;若不存在,请说明理由.

【答案】12)存在;定点为

【解析】

1)首先根据题意列出方程组,再解方程组即可.

2)首先设的方程为:.联立,利用韦达定理,结合求出直线,再令即可得到直线恒过的定点.

1)由题知,解得

所以椭圆的方程为.

2)设,因为直线的斜率不为零,令的方程为:

因为以为直径的圆与直线的另一个交点为

所以,则.

,故的方程为:.

,则

所以

所以.

故直线恒过定点,且定点为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某保险公司对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金,保险公司把企业的所有岗位共分为三类工种,从事这三类工种的人数分别为12000,6000,2000,由历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率):

已知三类工种职工每人每年保费分别为25元、25元、40元,出险后的赔偿金额分别为100万元、100万元、50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.

(1)求保险公司在该业务所或利润的期望值;

(2)现有如下两个方案供企业选择:

方案1:企业不与保险公司合作,职工不交保险,出意外企业自行拿出与保险公司提供的等额赔偿金赔偿付给意外职工,企业开展这项工作的固定支出为每年12万元;

方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责保费的30%,出险后赔偿金由保险公司赔付,企业无额外专项开支.

请根据企业成本差异给出选择合适方案的建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求过点的切线方程;

(2)当时,求函数的最大值;

(3)证明:当时,不等式对任意均成立(其中为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(文科)已知函数.

(1)若,求曲线在点处的切线方程;

(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数,试研究函数的极值情况;

(2)记函数在区间内的零点为,记,若在区间内有两个不等实根,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为,且各个水果是否为不合格品相互独立.

(Ⅰ)记10个水果中恰有2个不合格品的概率为,求取最大值时p的值

(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的作为p的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a元的赔偿费用

(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X,求EX;

(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)设,若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率存在且不为0的直线过点,设直线与椭圆交于两点,椭圆的左顶点为.

1)若的面积为,求直线的方程;

2)若直线分别交直线于点,且,记直线的斜率分别为.探究:是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案