精英家教网 > 高中数学 > 题目详情

【题目】以下命题正确的个数为( ) ①存在无数个α,β∈R,使得等式sin(α﹣β)=sinαcosβ+cosαsinβ成立;
②在△ABC中,“A> ”是“sinA> ”的充要条件;
③命题“在△ABC中,若sinA=sinB,则A=B”的逆否命题是真命题;
④命题“若α= ,则sinα= ”的否命题是“若α≠ ,则sinα≠ ”.
A.1
B.2
C.3
D.4

【答案】C
【解析】解:对于①,sin(α﹣β)=sinαcosβ﹣sinβcosα=sinαcosβ+cosαsinβ.可得sinβcosα=0,所以只要β=kπ,α任意,或者α=2kπ+ ,β任意.故正确.

对于②,A>30°得不出sinA> ,比如A=160°,若sinA> ,∵sin30°=sin150°= ,∴根据正弦函数在(0,π)上的图象可得:30°<A<150°,∴能得到A>30°;

得A>30°是sinA> 的必要不充分条件,故错;

对于③,命题“在△ABC中,若sinA=sinB,则A=B”是真命题,其逆否命题是真命题,故正确

对于④,命题“若α= ,则sinα= ”的否命题是“若α≠ ,则sinα≠ ”,正确.

故选:C

【考点精析】根据题目的已知条件,利用命题的真假判断与应用的相关知识可以得到问题的答案,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设定义在上的函数 ),给出以下四个论断:

的周期为;②在区间上是增函数;③的图象关于点对称;④的图象关于直线对称.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题(写成“”的形式)__________.(其中用到的论断都用序号表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集X={x1x2xn}(其中xi>0,i=1,2,…,n,n≥3),若对任意的xk∈X(k=1,2,…,n),都存在xixj∈Xxi≠xj),使得下列三组向量中恰有一组共线:

①向量(xixk)与向量(xkxj);②向量(xixj)与向量(xjxk);③向量(xkxi)与向量(xixj),则称X具有性质P。例如{1,2,4}具有性质P。

(1)若{1,3,x)具有性质P,则x的取值为________

(2)若数集{1,3,x1x2}具有性质P,则x1+x2的最大值与最小值之积为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某某车站在春运期间为了改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位:min).下面是这次抽样的频率分布表和频率分布直方图,解答下列问题:

分组

频数

频率

一组

0≤t<5

0

0

二组

5≤t<10

10

三组

10≤t<15

10

0.10

四组

15≤t<20

五组

20≤t<25

30

0.30

合计

100

1.00

(1)这次抽样的样本容量是多少?

(2)在表中填写缺失的数据并补全频率分布直方图.

(3)旅客购票用时的平均数可能落在哪一个小组?

(4)若每增加一个购票窗口可使平均购票用时缩短5 min,要使平均购票用时不超过10 min,那么你估计最少要增加几个窗口?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 存在两个极值点.
(Ⅰ)求实数a的取值范围;
(Ⅱ)设x1和x2分别是f(x)的两个极值点且x1<x2 , 证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在已知函数,(其中,,)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为

(1)求的解析式;

(2)当时,求的值域;

(3)求上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数f(x)中,满足“x1x2∈(0,+∞)且x1≠x2有(x1﹣x2)[f(x1)﹣f(x2)]<0”的是(
A.f(x)= ﹣x
B.f(x)=x3
C.f(x)=lnx+ex
D.f(x)=﹣x2+2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,算得

(1).求家庭的月储蓄对月收入的线性回归方程

(2).判断变量之间的正相关还是负相关;

(3).若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

附:回归直线的斜率和截距的最小二乘估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是( )

A. 事件“甲分得1张白牌”与事件“乙分得1张红牌”

B. 事件“甲分得1张红牌”与事件“乙分得1张蓝牌”

C. 事件“甲分得1张白牌”与事件“乙分得2张白牌”

D. 事件“甲分得2张白牌”与事件“乙分得1张黑牌”

查看答案和解析>>

同步练习册答案