分析 根据题意,作出经过点A1、E、F的截面四边形,求出它的面积解析式,计算它的最小值即可.
解答 解:设截面为A1FMN,显然A1FMN为平行四边形,过A点作AG⊥MF与G,则MG⊥A1G,作MK⊥AD与K,
根据题意AF=4λ,则CM=DK=4λ,KF=4-8λ,MF=$\sqrt{{4}^{2}{+(4-8λ)}^{2}}$,
易知Rt△MKF∽Rt△AGF,∴$\frac{KM}{MF}$=$\frac{AG}{4λ}$,∴AG=$\frac{16λ}{MF}$,
∴A1G2=AG2+AA12=$\frac{{(16λ)}^{2}}{{MF}^{2}}$+1,
∴S截面2=MF2×A1G2=MF2×($\frac{{(16λ)}^{2}}{{MF}^{2}}$+1)=162λ2+42+(4-8λ)2
=32(10λ2-2λ+1)=320(λ-$\frac{1}{10}$)2+$\frac{144}{5}$(0≤λ≤$\frac{1}{2}$),
∴当λ=$\frac{1}{10}$时,S截面2=取得最小值$\frac{144}{5}$,此时S截面为$\frac{12\sqrt{5}}{5}$.
故答案为:$\frac{12\sqrt{5}}{5}$.
点评 本题以长方体为载体,考查了空间中的位置关系与距离的计算问题,也考查了函数的最值问题,是综合性题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com