精英家教网 > 高中数学 > 题目详情
给出下列四个命题:
①函数f(x)=2x-x2有且仅有两个零点;
②对于函数f(x)=lnx的定义域中任意的x1,x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2

③已知f(x)=|2-x-1|,当a<b时有f(a)<f(b),则必有0<f(b)<1;
④已知图象连续不断的函数y=f(x)在区间(a,b)(b-a=0.1)上有唯一零点,如果用“二分法”求这个零点(精确度0.0001)的近似值,那么将区间(a,b)等分的次数至少是10次.
其中正确命题的序号是
③④
③④
分析:①根据零点存在定理可判断出f(x)在(-1,0)上有一个零点,结合2,4也是函数f(x)=2x-x2的零点,可判断①的真假;
②根据函数的凹凸性,可判断②的真假;
③根据指数函数的图象和性质及函数图象的平移变换和对折变换法则,分析出f(x)=|2-x-1|的图象和性质,可判断③的真假.
④根据计算精确度与区间长度和计算次数的关系满足
b-a
2n
<精确度确定等分次数,可判断④的真假;
解答:解:∵f(-1)<0,f(0)>0,故函数f(x)在(-1,0)上有一个零点,又∵f(2)=f(4)=0,故函数f(x)至少有三个零点,故①错误;
若任意的x1,x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,则函数f(x)为凹函数,但函数f(x)=lnx为凸函数,故②错误;
∵f(x)=|2-x-1|在(-∞,0]上为减函数,在[0,+∞)上为增函数,故当a<b时有f(a)<f(b)时,b>0,则必有0<f(b)<1,故③正确;
设须计算n次,则n满足
b-a
2n
=
0.1
2n
<0.0001,即2n>1000.由于29=512<1000,210=1024>1000,那么将区间(a,b)等分的次数至少是10次,即④正确.
故答案为:③④
点评:在用二分法求方程的近似解时,精确度与区间长度和计算次数之间存在紧密的联系,可以根据其中两个量求得另一个.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a?α,b?β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=
1
x
的单调减区间是(-∞,0)∪(0,+∞);
②函数y=x2-4x+6,当x∈[1,4]时,函数的值域为[3,6];
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,则A∩B=A.
其中正确命题的序号是
③④⑤
③④⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成二面角A-BD-C,点E,F分别为AC,BD的中点,给出下列四个命题:
①EF∥AB;②直线EF是异面直线AC与BD的公垂线;③当二面角A-BD-C是直二面角时,AC与BD间的距离为
6
2
;④AC垂直于截面BDE.
其中正确的是
②③④
②③④
(将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确的命题的个数为(  )
①命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函数;
④函数y=(x-1)2与y=2x-1在区间[0,+∞)上都是增函数,其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案