精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x24
-y2=1
,P为双曲线C上的任意一点.
(1)写出双曲线的焦点坐标和渐近线方程;
(2)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数.
分析:(1)由双曲线C的方程
x2
4
-y2=1即可写出双曲线的焦点坐标和渐近线方程;
(2)设P(x1,y1)是双曲线上任意一点,求得点P(x1,y1)到两条渐近线的距离计算即可.
解答:解:(1)依题意,双曲线的两焦点F1(-
5
,0),F2
5
,0),两条渐近线方程分别是x-2y=0和x+2y=0.
(2)设P(x1,y1)是双曲线上任意一点,该点P(x1,y1)到两条渐近线的距离分别是
|x1-2y1|
5
|x1+2y1|
5

∵P(x1,y1)为双曲线C上的任意一点,
x12-4y12=4,
∴它们的乘积是
|x1-2y1|
5
|x1+2y1|
5
=
x12-4y12
5
=
4
5

∴点P到双曲线的两条渐线的距离的乘积是一个常数.
点评:本题考查双曲线标准方程与的简单性质,考查点到直线间的距离公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x24
-y2=1
,P为C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设点A的坐标为(3,0),求|PA|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
4
-
y2
5
=1
的右焦点为F,过F的直线l与C交于两点A、B,若|AB|=5,则满足条件的l的条数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区一模)已知双曲线C:
x2
4
-y2
=1,以C的右焦点为圆心且与其渐近线相切的圆方程为
(x-
5
2+y2=4,
(x-
5
2+y2=4,
,若动点A,B分别在双曲线C的两条渐近线上,且|AB|=2,则线段AB中点的轨迹方程为
16x2+y2=4
16x2+y2=4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)在平面直角坐标系xOy中,已知双曲线C:
x2
4
-
y2
3
=1
.设过点M(0,1)的直线l与双曲线C交于A、B两点,若
AM
=2
MB
,则直线l的斜率为
±
1
2
±
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
4
-y2=1
,F1,F2是它的两个焦点.
(Ⅰ)求与C有共同渐近线且过点(2,
5
)的双曲线方程;
(Ⅱ)设P是双曲线C上一点,∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

同步练习册答案