精英家教网 > 高中数学 > 题目详情
13.在等比数列{an}中,a1=$\frac{1}{4}$,8a2,3a3,a4成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=log16an,求数列{bn}的前n项和Sn

分析 (1)由等比数列通项公式和等差数列的性质,列出方程,求出公比,由此能求出数列{an}的通项公式.
(2)当an=2×$(\frac{1}{4})^{n-1}$时,bn=log16an=$\frac{3}{4}-\frac{n}{2}$,当${a}_{n}=(\frac{1}{4})^{n-2}$时,bn=log16an=1-$\frac{n}{2}$,由此利用分组求和法能求出数列{bn}的前n项和.

解答 解:(1)∵在等比数列{an}中,a1=$\frac{1}{4}$,8a2,3a3,a4成等差数列,
∴2[3×($\frac{1}{4}{q}^{2}$)]=$8×(\frac{1}{4}q)$+$\frac{1}{4}{q}^{3}$,
解得q=2或q=4或q=0(舍),
∴${a}_{n}=2×(\frac{1}{4})^{n-1}$或${a}_{n}=4×(\frac{1}{4})^{n-1}$=($\frac{1}{4}$)n-2
(2)当an=2×$(\frac{1}{4})^{n-1}$时,bn=log16an=$lo{g}_{16}[2×(\frac{1}{4})^{n-1}]$=$lo{g}_{16}{2}^{3-2n}$=$\frac{3-2n}{4}$=$\frac{3}{4}-\frac{n}{2}$,
∴数列{bn}的前n项和:
Sn=$\frac{3}{4}n-\frac{1}{2}(1+2+3+…+n)$=$\frac{3}{4}n-\frac{1}{2}×\frac{n(n+1)}{2}$=$\frac{n}{2}-\frac{{n}^{2}}{4}$;
当${a}_{n}=(\frac{1}{4})^{n-2}$时,bn=log16an=log16[($\frac{1}{4}$)n-2]=1-$\frac{n}{2}$,
∴数列{bn}的前n项和:
Sn=n-$\frac{1}{2}(1+2+3+…+n)$=n-$\frac{1}{2}×\frac{n(n+1)}{2}$=$\frac{3n}{4}-\frac{{n}^{2}}{4}$.

点评 本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意等差数列、等比数列的性质和分组求和法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2},x<1}\\{alnx,x≥1}\end{array}\right.$,a∈R.
(1)当x<1时,求函数f(x)的单调区间和极值;
(2)对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是R上的奇函数,若g(x)=f(x)+4,且g(-2)=3,则g(2)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,AC为球O的直径,BC是截面圆O1的直径,点D在圆O1上,根据球的截面性质:球心和截面圆心的连线垂直于截面,求证:
(1)AB⊥平面BCD;
(2)平面ADC⊥平面ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若$\overrightarrow{OA}$=3e1,$\overrightarrow{OB}$=7e2,$\overrightarrow{PB}$=4$\overrightarrow{AP}$,$\overrightarrow{OP}$=me1+ne2,则m-n等于(  )
A.$\frac{1}{4}$B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=$\left\{\begin{array}{l}{cosπx,x≥0}\\{f(x+1)+1,x<0}\end{array}\right.$,则f($\frac{3}{5}$)+f(-$\frac{3}{5}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.简答题
已知tanα=2,求下列各式的值
(1)$\frac{sinα+3cosα}{3sinα-cosα}$(2)$\frac{2si{n}^{2}α-co{s}^{2}α}{si{n}^{2}α+sinαcosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,一次函数y=-$\frac{3}{4}$x+6的图象分别与x轴、y轴交于点A,B,点P从点B出发,沿BA以每秒1个单位长度的速度向点A,当点P到达点A时停止运动,设点P的运动时间为t秒.
(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点的坐标;
(2)在(1)的基础上,设点Q为y轴上一动点,当PQ+BQ的值最小时,求Q点坐标;
(3)在整个运动过程中,当t为何值时,△AOP为等腰三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.判断函数的奇偶性:
(1)f(x)=log3$\frac{x-2}{x+2}$
(2)f(x)=x($\frac{1}{{3}^{x}-1}$+$\frac{1}{2}$)

查看答案和解析>>

同步练习册答案