分析 利用同角三角函数的基本关系、诱导公式求得tanα的值,再利用二倍角的正切公式,求得tan2α的值.
解答 解:∵α是第三象限角,且cos(α+π)=-cosα=$\frac{4}{5}$,∴cosα=-$\frac{4}{5}$,∴sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{3}{5}$,
∴tanα=$\frac{sinα}{cosα}$=$\frac{3}{4}$,则tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=$\frac{\frac{3}{2}}{1-\frac{9}{16}}$=$\frac{24}{7}$,
故答案为:$\frac{24}{7}$.
点评 本题主要考查同角三角函数的基本关系、诱导公式、二倍角的正切公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
x | 1 | 2 | 3 | 4 | 5 |
lnx | 0 | 0.69 | 1.10 | 1.39 | 1.61 |
x-2 | -1 | 0 | 1 | 2 | 3 |
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | $1+\sqrt{3}$ | C. | $2+\sqrt{3}$ | D. | $4+2\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com