精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若有三个极值点,求的取值范围;

(2)若对任意都恒成立的的最大值为,证明: .

【答案】(1) 的取值范围为;(2)见解析.

【解析】试题分析:(1有三个极值点只需应有两个既不等于0也不等于的根;(2恒成立即.变量分离,转化为函数最值问题.

(1),定义域为

,∵

只需应有两个既不等于0也不等于的根,

①当时, ,∴单增, 最多只有一个实根,不满足;

②当时,

时, 单减;当时, 单增;

的极小值,

时, 时,

有两根,只需,由

,又由

反之,若时,则 的两根中,一个大于,另一个小于.

在定义域中,连同 共有三个相异实根,且在三根的左右, 正负异号,它们是的三个极值点.

综上, 的取值范围为.

(2) 恒成立,

①当或1时, 均满足;

恒成立恒成立,

欲证

只需证明 ,显然成立.

下证:

先证:

.

,∴上单增,

,∴上单增,∴,∴上单增,

,即证.

要证: .

只需证

,开口向上,上不等式恒成立,从而得证命题成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的最高点D的坐标( ,2),由D点运动到相邻最低点时函数曲线与x轴的交点( ,0)
(1)求f(x)的解析式
(2)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以(﹣2,0)为圆心且与直线mx+2y﹣2m﹣6=0(m∈R)相切的所有圆中,面积最大的圆的标准方程是(
A.(x+2)2+y2=16
B.(x+2)2+y2=20
C.(x+2)2+y2=25
D.(x+2)2+y2=36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四个命题: ①若直线a,b异面,b,c异面,则a,c异面;
②若直线a,b相交,b,c相交,则a,c相交;
③若a∥b,则a,b与c所成的角相等;
④若a⊥b,b⊥c,则a∥c.
其中真命题的个数为(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数的两个零点为.

(I)求曲线在点处的切线方程;

(II)求函数的单调区间;

(III)求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(Ⅰ)求图中a的值;
(Ⅱ)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(Ⅲ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O为AC与BD的交点,E为棱PB上一点. (Ⅰ)证明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等ax2﹣3x+2>0的解集{x|x<1或x>b}
(Ⅰ)求a,b的值;
(Ⅱ)解关于x的不等式:ax2﹣(ac+b)x+bx<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.

分数段

[50,60)

[60,70)

[70,80)

[80,90)

x:y

1:1

2:1

3:4

4:5

查看答案和解析>>

同步练习册答案