4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖá·Ç¸º°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=6sin¦È£®
£¨ I£©ÇóÖ±½Ç×ø±êÏÂÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÈôµãP£¨l£¬2£©£¬ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA£¬B£¬Çó|PA|+|PB|µÄÖµ£®

·ÖÎö £¨I£©Ô²CµÄ·½³ÌΪ¦Ñ=6sin¦È£¬¼´¦Ñ2=6¦Ñsin¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£¬Åä·½¿ÉµÃ±ê×¼·½³Ì£®
£¨II£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëÔ²µÄ·½³Ì¿ÉµÃ£ºt2-7=0£¬½âµÃt1£¬t2£®ÀûÓÃ|PA|+|PB|=|t1-t2|£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©Ô²CµÄ·½³ÌΪ¦Ñ=6sin¦È£¬¼´¦Ñ2=6¦Ñsin¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºx2+y2=6y£¬Å䷽Ϊx2+£¨y-3£©2=9£®
£¨II£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëÔ²µÄ·½³Ì¿ÉµÃ£ºt2-7=0£¬½âµÃt1=$\sqrt{7}$£¬t2=-$\sqrt{7}$£®
¡à|PA|+|PB|=|t1-t2|=2$\sqrt{7}$£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏߵIJÎÊý·½³Ì¼°ÆäÓ¦Óá¢Ô²µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁÐËÄ×麯ÊýÖУ¬±íʾÏàµÈº¯ÊýµÄÒ»×éÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=1£¬g£¨x£©=x0B£®f£¨x£©=|x|£¬g£¨t£©=$\sqrt{{t}^{2}}$
C£®f£¨x£©=$\frac{{x}^{2}-1}{x-1}$£¬g£¨x£©=x+1D£®f£¨x£©=lg£¨x+1£©+lg£¨x-1£©£¬g£¨x£©=lg£¨x2-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬¶ÌÖáµÄÒ»¸ö¶ËµãΪP£¬Ö±Ïßl£ºx+2y=0ÓëÍÖÔ²EµÄÒ»¸ö½»µãΪA£¬Èô|AF1|+|AF2|=10£¬µãPµ½Ö±ÏßlµÄ¾àÀë²»´óÓÚ$\frac{2\sqrt{5}}{5}$£¬ÔòÍÖÔ²EµÄÀëÐÄÂʵÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬$\frac{2\sqrt{6}}{5}$]B£®[$\frac{\sqrt{3}}{2}$£¬1£©C£®[$\frac{2\sqrt{6}}{5}$£¬1£©D£®£¨0£¬$\frac{\sqrt{3}}{2}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®º¯Êý$y=\root{3}{x}-\frac{1}{x^2}$ µÄÁãµãÊÇ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªa£¾0£¬b£¾0£¬ÇÒab=1£¬Ôòº¯Êýf£¨x£©=axÓ뺯Êýg£¨x£©=-logbxµÄͼÏó¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑ֪˫ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$£¨a£¾0£¬b£¾0£©µÄÁ½¸ö½¹µãΪF1¡¢F2£¬µãAÔÚË«ÇúÏßµÚÒ»ÏóÏÞµÄͼÏóÉÏ£¬Èô¡÷AF1F2µÄÃæ»ýΪ1£¬ÇÒtan¡ÏAF1F2=$\frac{1}{2}$£¬tan¡ÏAF2F1=-2£¬ÔòË«ÇúÏß·½³ÌΪ$\frac{{12{x^2}}}{5}-3{y^2}=1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¹ýÈýÀâ׶A-BCDµÄÀâAB£¬BC£¬CDµÄÖеãM£¬N£¬P×÷ƽÃæMNP£¬ÈýÀâ׶µÄÁùÌõÀâÖÐÓëƽÃæMNPƽÐеÄÊÇAC£¬BD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©¹ýµãA£¨1£¬-2£©£®
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£¬²¢ÇóÆä×¼Ïß·½³Ì£»
£¨2£©ÈôƽÐÐÓÚOA£¨OΪ×ø±êÔ­µã£©µÄÖ±ÏßlÓëÅ×ÎïÏßCÏཻÓÚM¡¢NÁ½µã£¬ÇÒ|MN|=3$\sqrt{5}$£®Çó¡÷AMNµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{49}$-$\frac{{y}^{2}}{24}$=1ÉÏÒ»µãPÓëË«ÇúÏßµÄÁ½¸ö½¹µãF1¡¢F2µÄÁ¬Ïß»¥Ïà´¹Ö±£¬ÔòÈý½ÇÐÎPF1F2µÄÃæ»ýΪ£¨¡¡¡¡£©
A£®20B£®22C£®28D£®24

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸