精英家教网 > 高中数学 > 题目详情
10.数学运算中,常用符号来表示算式,如$\sum_{i=0}^{n}{a}_{i}$=a0+a1+a2+a3+…+an,其中i∈N,n∈N*
(Ⅰ)若a0、a1、a2、…an成等差数列,且a0=0,公差d=1,求证:$\sum_{i=0}^{n}$(aiC${\;}_{n}^{i}$)=n•2n-1
(Ⅱ)若$\sum_{k=1}^{2n}$(1+x)k=a0+a1x+a2x2+…+a2nx2k,bn=$\sum_{i=0}^{n}{a}_{2i}$,记dn=1+$\sum_{i=1}^{n}$[(-1)ibiC${\;}_{n}^{i}$]且不等式t•(dn-1)≤bn对于?n∈N*恒成立,求实数t的取值范围.

分析 (Ⅰ)由题意求出等差数列的通项公式,然后结合二项式系数的性质证明$\sum_{i=0}^{n}$(aiC${\;}_{n}^{i}$)=n•2n-1
(Ⅱ)在二项式展开式中分别取x=-1,x=1,求出bn,再借助于二项式系数的性质化简可得dn,代入不等式t•(dn-1)≤bn,分n为奇数和偶数求得t的取值范围.

解答 (Ⅰ)证明:由已知得,等差数列的通项公式为an=n,
则$\sum_{i=0}^{n}$(aiC${\;}_{n}^{i}$)=${a}_{0}+{a}_{1}{C}_{n}^{1}+{a}_{2}{C}_{n}^{2}+…+{a}_{n}{C}_{n}^{n}$=${a}_{0}({C}_{n}^{0}+{C}_{n}^{1}+…+{C}_{n}^{n})+({C}_{n}^{1}+2{C}_{n}^{2}+…+n{C}_{n}^{n})$.
∵$k{C}_{n}^{k}=n{C}_{n-1}^{k-1}$,∴${C}_{n}^{1}+2{C}_{n}^{2}+…+n{C}_{n}^{n}=n({C}_{n-1}^{0}+{C}_{n-1}^{1}+…+{C}_{n-1}^{n-1})$,
∴$\sum_{i=0}^{n}$(aiC${\;}_{n}^{i}$)=${a}_{0}•{2}^{n}+n•{2}^{n-1}=n•{2}^{n-1}$;
(Ⅱ)解:令x=1,则$\sum_{i=0}^{2n}{a}_{i}=2+{2}^{2}+{2}^{3}+…+{2}^{2n}=\frac{2(1-{4}^{n})}{-1}=2•{4}^{n}-2$,
令x=-1,则$\sum_{i=0}^{2n}[(-1)^{i}{a}_{i}]=0$,∴${b}_{n}=\sum_{i=0}^{n}{a}_{2i}=\frac{1}{2}(2•{4}^{n}-2)={4}^{n}-1$,
由已知可知,${d}_{n}={C}_{n}^{0}-(4-1){C}_{n}^{1}+({4}^{2}-1){C}_{n}^{2}$$-({4}^{3}-1){C}_{n}^{3}+…+(-1)^{n}({4}^{n}-1){C}_{n}^{n}$
=$[{C}_{n}^{0}+{C}_{n}^{1}(-4)+{C}_{n}^{2}(-4)^{2}+{C}_{n}^{3}(-4)^{3}+…+{C}_{n}^{n}(-4)^{n}]$$-[{C}_{n}^{0}-{C}_{n}^{1}+{C}_{n}^{2}-{C}_{n}^{3}+{C}_{n}^{4}+…+(-1)^{n}{C}_{n}^{n}]+1$
=(1-4)n-(1-1)n+1=(-3)n+1,
∴${d}_{n}=(-3)^{n}+1$,
将${b}_{n}={4}^{n}-1,{d}_{n}=(-3)^{n}+1$代入不等式t•(dn-1)≤bn,得t•(-3)n≤4n-1,
当n为偶数时,$t≤(\frac{4}{3})^{n}-(\frac{1}{3})^{n}$,∴t≤$(\frac{4}{3})^{2}-(\frac{1}{3})^{2}=\frac{5}{3}$;
当n为奇数时,$t≥-[(\frac{4}{3})^{n}-(\frac{1}{3})^{n}]$,∴$t≥-[(\frac{4}{3})^{1}-(\frac{1}{3})^{1}]=-1$.
综上所述,所求实数t的范围是[-1,$\frac{5}{3}$].

点评 本题考查数列的求和,考查了二项式系数的性质,考查了逻辑思维能力和推理运算能力,体现了数学转化思想方法,属难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知lg2=a,lg3=b,则lg1.8=a+2b-1(用a,b表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知x1、x2是函数f(x)=x2+mx+t的两个零点,其中常数m、t∈Z,记$\sum_{i=0}^n{x^i}={x^0}+{x^1}+…+{x^n}$,设${T_n}=\sum_{r=0}^n{x_1^{n-r}x_2^r}$(n∈N*).
(1)用m、t表示T1、T2
(2)求证:T5=-mT4-tT3
(3)求证:对任意的n∈N*,Tn∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线l与直线l′:x+$\sqrt{3}$y=0垂直,垂足为O,过C的右焦点F分别作l,l′的垂线,垂足分别为N,P,若四边形ONFP的面积为$\sqrt{3}$,则双曲线C的方程为${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,定点A,B的坐标分别为A(0,27),B(0,3),一质点C从原点出发,始终沿x轴的正方向运动,已知第1分钟内,质点C运动了1个单位,之后每分钟内比上一分钟内多运动了2个单位,记第n分钟内质点运动了an个单位,此时质点的位置为(Cn,0).
(Ⅰ)求an,Cn的表达式;并求数列$\{\frac{1}{{{a_{n-1}}{a_n}}}\}$的前n项和Sn
(Ⅱ)当n为何值时,tan∠ACnB取得最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\frac{{{x^4}+k{x^2}+1}}{{{x^4}+{x^2}+1}}\;(k∈R)$,若对任意三个实数a、b、c,均存在一个以f(a)、f(b)、f(c)为三边之长的三角形,则k的取值范围是(  )
A.-2<k<4B.$-\frac{1}{2}<k<4$C.-2<k≤1D.$-\frac{1}{2}<k≤1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等差数列{an}前四项中第二项为606,前四项和S4为3883,则该数列第4项为(  )
A.3074B.2065C.2024D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知直线y=kx+1与双曲线3x2-y2=3的右支相交于不同的两点,则k的取值范围是$(-2,-\sqrt{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a=$\frac{\sqrt{3}}{2}$cos5°-$\frac{1}{2}$sin5°,b=2sin27°•cos27°,c=$\sqrt{\frac{1+cos48°}{2}}$,则a、b、c的大小关系是(  )
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

同步练习册答案