精英家教网 > 高中数学 > 题目详情

【题目】一汽车厂生产A、B、C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):

轿车A

轿车B

轿车C

舒适型

100

150

z

标准型

300

450

600

按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

【答案】
(1)解:设该厂这个月共生产轿车n辆,

由题意得 = ,∴n=2000,

∴z=2000﹣(100+300)﹣150﹣450﹣600=400


(2)解:设所抽样本中有a辆舒适型轿车,

由题意,得a=2.

因此抽取的容量为5的样本中,

有2辆舒适型轿车,3辆标准型轿车.

用A1,A2表示2辆舒适型轿车,用B1,B2,B3表示3辆标准轿车,

用E表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,

则基本事件空间包含的基本事件有:

(A1,A2),(A1B1),(A1B2),(A1,B3,),(A2,B1),(A2,B2)(A2,B3),

(B1B2),(B1,B3,),(B2,B3),共10个,

事件E包含的基本事件有:(A1A2),(A1,B1,),(A1,B2),(A1,B3),

(A2,B1),(A2,B2),(A2,B3),共7个,

故P(E)= ,即所求概率为


(3)解:样本平均数 = ×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.

设D表示事件“从样本中任取一数,该数与样本平均数之差的绝对不超过0.5”,

则基本事件空间中有8个基本事件,

事件D包括的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,

∴P(D)= = ,即所求概率为


【解析】(1)利用分层抽样满足每个个体被抽到的概率相等,列出方程求出n,再利用频数等于频率乘以样本容量求出n的值,据总的轿车数量求出z的值.(2)先利用分层抽样满足每个个体被抽到的概率相等,求出抽取一个容量为5的样本舒适型轿车的辆数,利用列举的方法求出至少有1辆舒适型轿车的基本事件,利用古典概型的概率公式求出概率.(3)利用平均数公式求出数据的平均数,通过列举得到该数与样本平均数之差的绝对值不超过0.5的数据,利用古典概型的概率公式求出概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a﹣c)cosB.
(1)求cosB;
(2)若 =4,b=4 ,求边a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=asin(2x+ )+b
(1)若a>0,求f(x)的单调递增区间;
(2)当x∈[0, ]时,f(x)的值域为[1,3],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 .若f(x)=x2+px+q的图象经过两点(α,0),(β,0),且存在整数n,使得n<α<β<n+1成立,则( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若当时,函数的图象恒在直线上方,求实数的取值范围;

(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正项数列{an}的前n项和Sn , 且满足2Sn=an2+an
(1)求数列{an}的通项公式;
(2)若数列bn= + ,数列{bn}的前n项和为Tn , 求证:Tn<2n+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若变量x,y满足约束条件 ,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,圆 .直线与抛物线交于点两点,与圆切于点.

(1)当切点的坐标为时,求直线及圆的方程;

(2)当时,证明: 是定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站针对2014年中国好声音歌手A,B,C三人进行网上投票,结果如下:

观众年龄

支持A

支持B

支持C

20岁以下

200

400

800

20岁以上(含20岁)

100

100

400

(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分层抽样的方法抽取6人作为一个总体,从这6人中任意选取2人,求恰有1人在20岁以下的概率.

查看答案和解析>>

同步练习册答案