精英家教网 > 高中数学 > 题目详情
12.在集合{(x,y)|0≤x≤5,且0≤y≤4}内任取一个元素,能使代数式3x+4y-12≥0的概率为$\frac{7}{10}$.

分析 本题是一个几何概型,试验发生包含的事件对应的集合Ω={(x,y)|0≤x≤5,且0≤≤4},满足条件的事件对应的集合是A={(x,y)|1≤x≤5,且0≤y≤4,3x+4y-12≥0},做出对应的面积,得到概率.

解答 解:如图,集合{(x,y)|0≤x≤5,且0≤≤4}为矩形内(包括边界)的点的集合,
3x+4y-12≥上方(包括直线)所有点的集合,
所以所求概率=$\frac{{S}_{阴影}}{{S}_{矩形}}$=$\frac{7}{10}$.
故答案为:$\frac{7}{10}$.

点评 本题考查几何概型,关键是明确事件的集合测度,本题利用面积比求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.-630°化为弧度为-$\frac{7π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.求值sin164°sin224°+sin254°sin314°=(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题p:?x0∈R,x${\;}_{0}^{2}$+x0+1≤0,命题q:函数f(x)=x${\;}^{\frac{1}{3}}$是增函数,则下列命题为真命题的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.${∫}_{-1}^{1}$(1+x+$\sqrt{1-{x}^{2}}$)dx=(  )
A.2-$\frac{π}{2}$B.2-πC.2+$\frac{π}{2}$D.2+π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|$\frac{1}{x}$<1},集合B={x|y=$\sqrt{x-|x|}$},则A∩B=(  )
A.{x|x≥0}B.{x|0≤x<1}C.{x|x>1}D.{x|x≤0或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在复平面内,复数$\frac{1-2i}{2+i}$=(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在直二面角α-l-β内,直线a?α,直线b?β,a和b都与l相交但不垂直,则(  )
A.a与b不垂直但可能平行B.a与b可能垂直也可能平行
C.a与b不垂直也不平行D.a与b可能垂直但不可能平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.假设某省今年高考考生成绩ξ服从正态分布N(500,1002),现有考生25万名,计划招生10万名,其中分数在475~500之间的学生共有2.5万人,试估计录取分数线.

查看答案和解析>>

同步练习册答案