精英家教网 > 高中数学 > 题目详情
(2008•武汉模拟)在正四棱锥s-ABCD中,侧面与底面所成角为
π
3
,则它的外接球半径R与内切球半径r的比值为(  )
分析:通过侧面与底面所成角为
π
3
,设出正四棱锥的底面边长,推出斜高,侧棱长,求出内切球的半径;利用外接球的球心与正四棱锥的高在同一条直线,结合勾股定理求出,外接球的半径,即可得到比值.
解答:解:由于侧面与底面所成角为
π
3
,可知底面对边中心线与两个对面斜高构成正三角形,
设底面边长为a,则斜高也为a,进而可得侧棱长为:
5
a
2
,高为
3
a
2

四棱锥的内切球半径就是上述正三角形的内切圆半径为
3
a
6

其外接球球心必在顶点与底面中心连线上,如图:半径为R,
球心为O,顶点为P,底面中心为O1,底面一个顶点为B,则OB=OP,
于是就有:(
3
a
2
-R)2+(
2
a
2
2=R2
解得R=
5
3
a
12

所以两者的比为:
5
2

故选D
点评:本题考查学生的空间想象能力,计算能力推理能力.求出球的半径与正三棱柱的底面边长的关系,是本题的关键,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•武汉模拟)已知实数x,y满足
y-x≥1
x+y≤1
-2x+y≤2
,则当z=3x-y取得最小值时(x,y)=
(-1,0)
(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)已知a>0,过M(a,0)任作一条直线交抛物线y2=2px(p>0)于P,Q两点,若
1
|MP|2
+
1
|MQ|2
为定值,则a=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如果关于x的方程ax+
1
x2
=3
有且仅有一个正实数解,那么实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)已知P为椭圆
x2
4
+y2=1
和双曲线x2-
y2
2
=1
的一个交点,F1,F2为椭圆的焦点,那么∠F1PF2的余弦值为
-
1
3
-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)从4双不同鞋子中取出4只鞋,其中至少有2只鞋配成一双的取法种数为
54
54
.(将计算的结果用数字作答)

查看答案和解析>>

同步练习册答案