精英家教网 > 高中数学 > 题目详情
设F1和F2为双曲线的两个焦点,点在双曲线上且满足,则的面积是(     )。
A.1B.C.2D.
A

【错解分析】未将两边平方,再与②联立,直接求出
【正解】  
 ①
 ②
联立①②解得
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图:在面积为1的DPMN中,tanÐPMN=,tanÐMNP=-2,试建立适当的坐标系,求以MN为焦点且过点P的椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,已知直线OP1OP2为双曲线E:的渐近线,△P1OP2的面积为,在双曲线E上存在点P为线段P1P2的一个三等分点,且双曲线E的离心率为.

(1)若P1P2点的横坐标分别为x1x,则x1x2之间满足怎样的关系?并证明你的结论;
(2)求双曲线E的方程;
(3)设双曲线E上的动点,两焦点,若为钝角,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
抛物线顶点在坐标原点,焦点与椭圆的右焦点重合,过点斜率为的直线与抛物线交于两点.

(Ⅰ)求抛物线的方程;
(Ⅱ)求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)已知椭圆的离心率为为椭圆的右焦点,两点在椭圆上,且,定点
(1)若时,有,求椭圆的方程;
(2)在条件(1)所确定的椭圆下,当动直线斜率为k,且设时,试求关于S的函数表达式f(s)的最大值,以及此时两点所在的直线方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线上有一点P到左准线的距离为,则P到右焦点的距离为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点F( 1,0),与直线4x+3y + 1 =0相切,动圆M与及y轴都相切. (I )求点M的轨迹C的方程;(II)过点F任作直线l,交曲线C于A,B两点,由点A,B分别向各引一条切线,切点 分别为P,Q,记.求证是定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,已知椭圆的焦点为,离心率为,过点的直线交椭圆两点.

(1)求椭圆的方程;
(2)①求直线的斜率的取值范围;
②在直线的斜率不断变化过程中,探究是否总相等?若相等,请给出证明,若不相等,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆长轴长与短轴长之比为2,它的一个焦点是(2,0),则椭圆的标准方程是               

查看答案和解析>>

同步练习册答案