精英家教网 > 高中数学 > 题目详情
已知A={x||x-2|>1},B={x|
x-4x+1
≤0}
,求A∩B、(?UA)∪B.
分析:先由含绝对值不等式的解法和分式不等式的解法求出集合A和B,再求A∩B、(?UA)∪B.
解答:解:∵A={x||x-2|>1}={x|x>3或x<1},
B={x|
x-4
x+1
≤0}
={x|-1<x≤4},
∴A∩B={x|-1<x<1或3<x≤4}
(?UA)∪B={x|1≤x≤3}∪{x|-1<x≤4}={x|-1<x≤4}.
点评:本题考查集合的交、并、补的混合运算,解题时要注意含绝对值不等式和分式不等式的解法的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A={x|x<3},B={x|-1<x<5},则A∪B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|
x-5
2
<-1},若?AB={x|x+4<-x},则集合B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x<1},B={x|-1<x<2},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案