已知椭圆C的左、右焦点分别为,椭圆的离心率为
,且椭圆C经过点
.
(1)求椭圆C的标准方程;
(2)若线段是椭圆过点
的弦,且
,求
内切圆面积最大时实数
的值.
(1);(2)
,
.
解析试题分析:本题主要考查直线、椭圆的标准方程及其性质,考查思维能力,运算能力.第一问,利用离心率和椭圆过定点
求椭圆的标准方程;第二问,分两种情况:当直线
与
轴垂直时,比较直观,可求得
,而当直线
不与
轴垂直时,设出直线
的方程,让它与椭圆联立,消去参数
,得到两根之和、两根之积,代入到
中,通过配方法求面积的最大值,利用内切圆半径
列出
的面积,解出
的范围,得到
,此时直线
与
轴垂直,所以
.
试题解析:(1),又
4分
(2)显然直线不与
轴重合
当直线与
轴垂直时,|
|=3,
,
; 5分
当直线不与
轴垂直时,设直线
:
代入椭圆C的标准方程,
整理,得 7分
令
所以
由上,得
所以当直线与
轴垂直时
最大,且最大面积为3 10分
设内切圆半径
,则
即,此时直线
与
轴垂直,
内切圆面积最大
所以, 12分
考点:1.椭圆的标准方程;2.直线的标准方程;3.韦达定理;4.三角形面积公式;5.配方法求最值.
科目:高中数学 来源: 题型:解答题
已知椭圆两焦点坐标分别为
,
,且经过点
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知点,直线
与椭圆
交于两点
.若△
是以
为直角顶点的等腰直角三角形,试求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设F(-c,0)是椭圆的左焦点,直线l:x=-
与x轴交于P点,MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点P的直线m与椭圆相交于不同的两点A,B。
①证明:∠AFM=∠BFN;
②求△ABF面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知的两顶点坐标
,
,圆
是
的内切圆,在边
,
,
上的切点分别为
,
(从圆外一点到圆的两条切线段长相等),动点
的轨迹为曲线
.
(1)求曲线的方程;
(2)设直线与曲线
的另一交点为
,当点
在以线段
为直径的圆上时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为
,其中左焦点
(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直线y=kx+b与椭圆交于A、B两点,记△AOB的面积为S.
(1)求在k=0,0<b<1的条件下,S的最大值;
(2)当|AB|=2,S=1时,求直线AB的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com