精英家教网 > 高中数学 > 题目详情
a=(cos(x-),sin(x-)),b=(,-).

(1)设f(x)=a·b,试在如图的坐标系中画出函数y=f(x)在[π,π]上的简图;

(2)设方程f(x)=a在[0,π]上的三正根依次成等比数列,试求实数a的值.

解析:(1)a·b=cos(x-)-sin(x-)=coscos(x-)-sinsin(x-)

=cos(+x-)=cos(x+),∴f(x)=cos(x+).

x

-π

-

π

π

π

π

π

f(x)

0

1

0

-1

0

1

0

-1

(2)方程f(x)=a的根即为y=f(x)的图象与直线y=a交点的横坐标,如(1)简图,设三根分别为0<x1<x2<x3,则A(x1,a),B(x2,a)两点关于直线x=π对称,

    故x1+x2=π.而x3-x1=2π,∴x2=π-x1,x3=2π+x1.

    由x22=x1x3得(π-x1)2=x1(2π+x1),解得x1=π,

∴a=f(x1)=cos(x1+)=cosπ.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列命题:
①在函数y=cos(x-
π
4
)cos(x+
π
4
)的图象中,相邻两个对称中心的距离为π;
②函数y=log2|3x-m|的图象关于直线x=
1
2
对称,则m=
3
2

③关于x的方程ax2-2x+1=0有且仅有一个实数根,则实数a=1;
④设0≤x≤2π,且
1-sin2x
=sinx-cosx
,则x的取值范围是
π
4
≤x≤
4

其中真命题的序号是
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)设函数f(x)=sinx+cos(x+
π
6
),x∈R
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=
3
2
,且a=
3
2
b
,求角C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)设ω>0,函数f(x)=sin(ωx+?)在区间[a,b]上递减,且值域为[-1,1],则函数g(x)=cos(ωx+?)在[a,b]上的单调递增区间是
[
a+b
2
,b]
[
a+b
2
,b]

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(2cosωx,
3
sinωx),
b
=(cosωx,2cosωx)(w>0),函数f(x)=
a
b
的最小正周期为π:
(Ⅰ) 求f(x)的单调增区间
(Ⅱ) 在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=2,b=1,△ABC的面积为
3
2
,求
b+c
sinB+sinC
的值.

查看答案和解析>>

同步练习册答案