精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图,在四棱锥中,底面是正方形,侧棱底面的中点。
(1)证明:
(2)求为轴旋转所围成的几何体体积。
(2)
解:(1)连接,连接…………2分

是正方形,
中点,的中点,
 …………………5分
平面,
………………7分
(2)过的垂线,垂足为
则几何体为为半径,分别以为高的两个圆锥的组合体
侧棱底面

……………………9分
…………10分
     
=…………12分
=…………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥的底面边长和各侧棱长都是13,分别是上的点且.求证:直线平面
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,长方体中,是平面上的线段,
求证:平面
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

P在平面ABC的射影为O,且PAPBPC两两垂直,那么O是△ABC的(    )
A.内心B.外心
C.垂心D.重心

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若平面α与β的法向量分别是
a
=(2,4,-3),
b
=(-1,2,2)
,则平面α与β的位置关系是(  )
A.平行B.垂直
C.相交但不垂直D.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在空间直角坐标系中,正方体棱长为2,点E是棱AB的中点,点F(0,y,z)是正方体的面AA1D1D上点,且CF⊥B1E,则点F(0,y,z)满足方程(  )
A.y-z=0B.2y-z-1=0C.2y-z-2=0D.z-1=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

底面ABCD为矩形的四棱锥P-ABCD中,AB=
3
,BC=1,PA=2,侧棱PA⊥底面ABCD,E为PD的中点
(Ⅰ)求直线AC与PB所成角的余弦值;
(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出点N到AB和AP的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是梯形,ADBC且∠ADC=60°,BC=2AD=4.
(1)求证:DC⊥PA;
(2)在PB上是否存在一点M(不包含端点P,B)使得二面角C-AM-B为直二面角,若存在求出PM的长,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为直线,为平面,则下列命题中不正确的是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案