精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线y2=4x的焦点F,过焦点的直线与抛物线交于A,B两点,则4|FA|+|FB|的最小值为

【答案】9
【解析】解:抛物线的焦点为F(1,0),(1)若直线与x轴垂直,则直线方程为x=1,

代入抛物线方程得y=±2,

∴|FA|=|FB|=2,

∴4|FA|+|FB|=10.(2)若直线与x轴不垂直,显然直线有斜率,

设直线方程为y=k(x﹣1),

联立方程组 ,消元得k2x2﹣(2k2+4)x+k2=0,

设A(x1,y1),B(x2,y2),

则x1x2=1,即x2=

∵A,B在抛物线上,∴|FA|=x1+1,|FB|=x2+1=

∴4|FA|+|FB|=4x1+4+ +1=4x1+ +5≥2 +5=9.

当且仅当4x1= 即x1= 时取等号.

综上,4|FA|+|FB|的最小值为9.

所以答案是:9.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程 (φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是2ρsin(θ+ )=3 ,射线OM:θ= 与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图直三棱柱ABC﹣A1B1C1 中AC=2AA1 , AC⊥BC,D、E 分别为A1C1、AB 的中点.求证:

(1)AD⊥平面BCD
(2)A1E∥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为2的正三角形△ABC中,D为BC的中点,E,F分别在边CA,AB上.
(1)若 ,求CE的长;
(2)若∠EDF=60°,问:当∠CDE取何值时,△DEF的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋时期的数学家秦九韶是普州(现四川省安岳县)人,秦九韶在其所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一例,则输出的S的值为(
A.4
B.﹣5
C.14
D.﹣23

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex+sinx(e为自然对数的底数),g(x)=ax,F(x)=f(x)﹣g(x).
(1)若x=0是F(x)的极值点,且直线x=t(t≥0)分别与函数f(x)和g(x)的图象交于P,Q,求P,Q两点间的最短距离;
(2)若x≥0时,函数y=F(x)的图象恒在y=F(﹣x)的图象上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,sin = ,AB=2,点D在线段AC上,且AD=2DC,BD= ,则cosC=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以F为焦点的抛物线C:y2=2px(p>0)上的两点A,B满足 =3 ,若弦AB的中点到准线的距离为 ,则抛物线的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:参数方程与极坐标系]
已知曲线C1的参数方程为 (t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为
(Ⅰ)求曲线C2的直角坐标系方程;
(Ⅱ)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.

查看答案和解析>>

同步练习册答案