精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,若公比q>1,且a3a7=16,a4+a6=10,则a3=(  )
分析:由等比数列的性质可知:a4a6=a3a7=16,又a4+a6=10,解得
a4=8
a6=2
   ①或
a4=2
a6=8
   ②经验证可知,
a4=2
a6=8
符合题意,可求q,进而求得答案.
解答:解:由等比数列的性质可知:a4a6=a3a7=16,又a4+a6=10
a4a6=16
a4+a6=10
解得
a4=8
a6=2
   ①或
a4=2
a6=8
   ②
由①得q2=
a6
a4
=
1
4
与公比q>1矛盾,故应舍去;
由②得q2=
a6
a4
=4,解得q=2,或q=-2(舍去),
故a3=
a4
q
=
2
2
=1

故选D
点评:本题考查等比数列的基本运算,涉及方程组的求解及分类讨论的思想,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案