【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 1 | 3 | 4 | 7 |
表中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为,.
科目:高中数学 来源: 题型:
【题目】已知圆x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为α的弦.
(1)当α=时,求AB的长;
(2)当弦AB被点P0平分时,写出直线AB的方程(用直线方程的一般式表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,
每次取出后不放回,连续取两次.
(1)求取出的两件产品中恰有一件次品的概率;
(2)如果将“每次取出后不放回”这一条件换成“每次取出后放回”,则取出的两件产品中恰有一件次品的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.
(Ⅰ)证明:平面 平面;
(Ⅱ)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的椭圆C经过点M(2,1),N(,-).
(1)求椭圆C的标准方程;
(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的A,B两点,求直线AB的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是直角梯形, , , ,点在线段上,且, , 平面.
(1)求证:平面平面;
(2)当四棱锥的体积最大时,求平面与平面所成二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有5人进入到一列有7节车厢的地铁中,分别求下列情况的概率用数字作最终答案:
恰好有5节车厢各有一人;
恰好有2节不相邻的空车厢;
恰好有3节车厢有人.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com