精英家教网 > 高中数学 > 题目详情
已知在长方形ABCD中,AB=2,BC=1,在长方形ABCD中任取一点P,求∠APB<∠90°的概率.
考点:几何概型
专题:概率与统计
分析:点P在矩形ABCD内,若使∠APB<90°,则P应在以AB为直径的半圆外部,所以使∠APB<90°的概率是半圆外的面积比上矩形的面积.
解答: 解:如图,矩形ABCD中AB=2,BC=1,图中白色区域是以AB为直径的半圆
当P落在半圆内时,∠APB>90°;
当P落在半圆上时,∠APB=90°;
当P落在半圆外时,∠APB<90°;
故使∠APB<90°的概率P=
S矩形-S半圆
S矩形
=
2-
1
2
π
2
=1-
π
4
点评:本题考查的知识点是几何概型,关键是要画出满足条件的图形,结合图形找出使∠APB<∠90°成立的图形范围,求出对应的图形面积及图形的总面积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=-
3x+2
x+1
在(-∞,a)上单调递减,则实数a的范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中
①“数列{an}既是等差数列,又是等比数列”的充要条件是“数列{an}是常数列”;
②若命题“p且q”为假命题,则p,q均为假命题;
③对命题p:存在x0∈R,使得x02+x0+1<0,则¬p:对于任意的x∈R均有x2+x+1≥0;
④若两个非零向量
a
b
共线,则存在两个非零实数λ,μ,使λ
a
b
=
0

正确命题的个数是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=a-bsin(4x-
π
3
)(b>0)的最大值是5,最小值是1,求函数y=-
2bsinx
a
+5的最大值,并求出此时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|log5(1-x)|(x<1)
-(x-2)2+2(x≥1)
,则关于x的方程f(|x|)=a的实数个数不可能为(  )
A、3个B、4个C、5个D、6个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx(sinx+cosx)-1.
(1)求函数的最小正周期和最值;
(2)画出函数在区间[-
π
2
π
2
]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)与g(x)是定义在同一区间D上的两个函数,若?x0∈D,使得|f(x0)-g(x0)|≤1,则称f(x)和g(x)是D上的“接近函数”,D称为“接近区间”;若?x∈D,都有|f(x)-g(x)|>1,则称f(x)和g(x)是D上的“远离函数”,D称为“远离区间”.给出以下命题:
①f(x)=x2+1与g(x)=x2+
3
2
是(-∞,+∞)上的“接近函数”;
②f(x)=x2-3x+4与g(x)=2x-3的一个“远离区间”可以是[2,3];
③f(x)=
1-x2
和g(x)=-x+b(b>
2
)是(-1,1)上的“接近函数”,则
2
<b≤
2
+1;
④若f(x)=
lnx
x
+2ex与g(x)=x2+a+e2(e是自然对数的底数)是[1,+∞)上的“远离函数”,则a>1+
2
e

其中的真命题有
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

若执行如图的程序框图,则输出的k值是(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα,tanβ是关于x的方程x2+(logaM+logbM)x-logaM•logbM=0的两个根,其中a、b,M均为不等于1的正数,若sinαcosβ+cosαsinβ=2sinαsinβ,则a,b,M满足的关系是(  )
A、
a+b
2
=M
B、
ab
=M
C、a+b=M
D、ab=M

查看答案和解析>>

同步练习册答案