精英家教网 > 高中数学 > 题目详情
已知数列{an}为等差数列,其中a1=1,a7=13
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=
1
anan+1
,Tn为数列{bn}的前n项和,当不等式λTn<n+8•(-1)n(n∈N*)恒成立时,求实数λ的取值范围.
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)设等差数列{an}的公差为d,由a1=1,a7=13,利用等差数列的通项公式即可得出.
(2)由(1)可得:bn=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用“裂项求和”可得Tn=
n
2n+1
.数列{bn}的前n项和,当不等式λTn<n+8•(-1)n(n∈N*)恒成立时,对n分类讨论.①当n为偶数时,要使不等式λTn<n+8•(-1)n(n∈N*)恒成立,只需不等式λ<
(2n+1)(n+8)
n
=2n+
8
n
+17恒成立即可,利用基本不等式的性质可得2n+
8
n
的最小值.②当n为奇数时,要使不等式λTn<n+8•(-1)n(n∈N*)恒成立时,只需不等式λ<
(n-8)(2n+1)
n
=2n-
8
n
-15恒成立即可,考察2n-
8
n
的单调性即可得出.
解答: 解:(1)设等差数列{an}的公差为d,∵a1=1,a7=13,
∴1+6d=13,解得d=2.
∴an=1+2(n-1)=2n-1.
(2)bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]

=
1
2
(1-
1
2n+1
)
=
n
2n+1

数列{bn}的前n项和,当不等式λTn<n+8•(-1)n(n∈N*)恒成立时,对n分类讨论.
①当n为偶数时,要使不等式λTn<n+8•(-1)n(n∈N*)恒成立,只需不等式λ<
(2n+1)(n+8)
n
=2n+
8
n
+17恒成立即可,
2n+
8
n
≥8
,等号在n=2时取得,∴λ<25.
②当n为奇数时,要使不等式λTn<n+8•(-1)n(n∈N*)恒成立时,只需不等式λ<
(n-8)(2n+1)
n
=2n-
8
n
-15恒成立即可,
∵2n-
8
n
是随n的增大而增大,
∴n=1时,2n-
8
n
取得最小值-6,∴λ<-21.
综合①②可得:λ的取值范围是(-∞,-21).
点评:本题考查了等差数列的通项公式、“裂项求和”、基本不等式的性质、数列的单调性,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中,∠A,∠B,∠C所对的边长分别为a,b,c,若∠C=90°,a=8,∠B=30°,则b=
 
,c=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校开设A类课3门,B类课5门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有
(  )
A、15种B、30种
C、45种D、90种

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn和通项an满足2Sn+an=1,数列{bn}中,b1=1,b2=
1
2
2
bn+1
-
1
bn
-
1
bn+2
=0(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)数列{cn}满足cn=
an
bn
,且Tn=c1+c2+c3+…+cn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等差数列{an}满足:an2-an+1-an-1=0(n≥2),等比数列{bn}满足:bn+1•bn-1-2bn=0(n≥2),则log2(an+bn)=(  )
A、-1或2B、0或2C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

从3名语文老师、4名数学老师和5名英语老师中选派5人组成一个支教小组,则语文、数学和英语老师都至少有1人的选派方法种数是(  )
A、590B、570
C、360D、210

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,2,3,4,5这5个数中任取两数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.  上述事件中,是对立事件的是(  )
A、①B、②④C、③D、①③

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=3
3
,BC=3,沿对角线BD把△BCD折起,使点C移到点P且点P在面ABD内的射影O恰好落在AB上.
(1)求证:AP⊥BP;
(2)求二面角P-BD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面用“二分法”求方程x2-2=0(x>0)的近似的程序框图转化为相应的程序.

查看答案和解析>>

同步练习册答案